• PDF

    Final published version

    160 KB, PDF-document


Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (δ13C) and nitrogen stable isotope ratios (δ15N) showed little variation across species but varied between tissues. Apparent discrimination factors ranged between −0.5 to 2.5‰ for δ13C and 2.8 to 5.2‰ for δ15N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors. Turn-over of δ13C in tissues was most rapid in blood plasma, with a half-life of 4.3 d, whereas δ13C in blood cells had a half-life of approximately 32 d. Turn-over times for albumen and yolk in laying females were similar to those of blood plasma, at 3.2 and 6.0 d respectively. Within yolk, we found decreasing half-life times of δ13C from inner yolk (13.3 d) to outer yolk (3.1 d), related to the temporal pattern of tissue formation. We found similarities in tissue-specific turn-over times across all avian species studied to date. Yet, while generalities regarding discrimination factors and tissue turn-over times can be made, a large amount of variation remains unexplained.
Original languageEnglish
Article numbere30242
JournalPLoS One
Issue number2
StatePublished - 2012

ID: 368602