Variable timing of synaptic transmission in cerebellar unipolar brush cells

Stijn van Dorp, Chris I De Zeeuw

Research output: Contribution to journal/periodicalArticleScientificpeer-review

28 Citations (Scopus)
144 Downloads (Pure)

Abstract

The cerebellum ensures the smooth execution of movements, a task that requires accurate neural signaling on multiple time scales. Computational models of cerebellar timing mechanisms have suggested that temporal information in cerebellum-dependent behavioral tasks is in part computed locally in the cerebellar cortex. These models rely on the local generation of delayed signals spanning hundreds of milliseconds, yet the underlying neural mechanism remains elusive. Here we show that a granular layer interneuron, called the unipolar brush cell, is well suited to represent time intervals in a robust way in the cerebellar cortex. Unipolar brush cells exhibited delayed increases in excitatory synaptic input in response to presynaptic stimulation in mouse cerebellar slices. Depending on the frequency of stimulation, delays extended from zero up to hundreds of milliseconds. Such controllable protraction of delayed currents was the result of an unusual mode of synaptic integration, which was well described by a model of steady-state AMPA receptor activation. This functionality extends the capabilities of the cerebellum for adaptive control of behavior by facilitating appropriate output in a broad temporal window.

Original languageEnglish
Pages (from-to)5403-8
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume111
Issue number14
DOIs
Publication statusPublished - 08 Apr 2014

Keywords

  • Cerebellum
  • Humans
  • Synaptic Transmission

Fingerprint

Dive into the research topics of 'Variable timing of synaptic transmission in cerebellar unipolar brush cells'. Together they form a unique fingerprint.

Cite this