Documents

  • 6131_Magdaraog

    Final published version, 394 KB, PDF-document

    Request copy

DOI

Coexistence or displacement of parasitoids in hosts during intrinsic competitive interactions between different parasitoid species (multiparasitism) may depend on their life history traits and behavior. Intense competition for possession of hosts may lead to the elimination of the inferior competitor through physical attack and/or physiological suppression. However, the mechanisms of physiological suppression during multiparasitism remain unclear. Previous work has shown that first instar larvae of the solitary endoparasitoid Meteorus pulchricornis possess well-developed mandibles that are used to kill competitors. Two gregarious endoparasitoids, Cotesia kariyai and C. rufricus, share host resources especially when the time gap of oviposition is short. Here, we investigated the physiological influence of wasp-regulatory factors of the three endoparasitoids, M. pulchricornis, C. kariyai, and C. ruficrus, in their common host Mythimna separata. We found that MpVLP alone (or with venom) deleteriously affected the development of the two gregarious species. Similarly, CkPDV plus venom had toxic effect on M. pulchricornis eggs and immature larvae, although they were not harmful to immature stages of C. ruficrus. Cotesia kariyai and C. ruficrus were able to coexist mainly through the expression of regulatory factors and both could successfully emerge from a multiparasitized host. The injection of CkPDV plus venom after oviposition in L5 host larvae facilitated C. ruficrus development and increased the rate of successful parasitism from 9% to 62%. This suggests that the two gregarious parasitoid wasps exhibit strong phylogenetic affinity, favoring their coexistence and success in multiparasitized hosts. (C) 2016 Wiley Periodicals, Inc.
Original languageEnglish
Pages (from-to)87-107
Number of pages21
JournalArchives of Insect Biochemistry and Physiology
Volume92
Issue number2
DOI
Publication statusPublished - 2016

    Research areas

  • international

ID: 2221261