Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current

M. Paul, T.J. Bouma, C.L. Amos

Research output: Contribution to journal/periodicalArticleScientificpeer-review

Abstract

Accurate wave height prediction along the shore plays an important role in coastal protection and management. To account for the effect of submerged vegetation in wave-attenuation models, it is important to understand how the interaction between vegetation characteristics and hydrodynamic forcing affects wave attenuation. To determine the effect of vegetation characteristics, we used seagrass mimics that varied in (1) blade stiffness, (2) shoot density and (3) leaf length; to investigate the effect of hydrodynamic forcing, we studied wave attenuation in the absence and presence of a tidal current. Results show that wave attenuation is positively correlated with blade stiffness and for a given wave in shallow water, attenuation is dependent on a combination of shoot density and leaf length, which can be described by the leaf area index. The presence of a tidal current strongly reduced the wave-attenuating capacity of seagrass mimics, and this reduction was most pronounced at high shoot densities. Thus, most studies that have been carried out under waves only will structurally overestimate wave attenuation for tidal environments, emphasising that tidal currents need to be taken into account in future studies on wave attenuation by vegetation.
Original languageEnglish
Pages (from-to)31-41
JournalMarine Ecology Progress Series
Volume444
DOIs
Publication statusPublished - 2012
Externally publishedYes

Keywords

  • international

Fingerprint Dive into the research topics of 'Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current'. Together they form a unique fingerprint.

Cite this