Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop

MAARTEN SCHRAMA1, BART VANDECASTEELLE2, SABRINA CARVALHO1, HILDE MUYLLE2 and WIM H. VAN DER PUTTEN1,3

1Department of Terrestrial Ecology (NIOO-KNAW), Netherlands Institute for Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands, 2Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Caritasstraat 21, 9090 Melle, Belgium, 3Laboratory of Nematology, Department of Plant Sciences, Wageningen University (WUR), PO Box 8123, 6700 ES Wageningen, The Netherlands

Abstract

To develop a more sustainable bio-based economy, an increasing amount of carbon for industrial applications and biofuel will be obtained from bioenergy crops. This may result in intensified land use and potential conflicts with other ecosystem services provided by soil, such as control of greenhouse gas emissions, carbon sequestration, and nutrient dynamics. A growing number of studies examine how bioenergy crops influence carbon and nitrogen cycling. Few studies, however, have combined such assessments with analysing both the immediate effects on the provisioning of soil ecosystem services as well as the legacy effects for subsequent crops in the rotation. Here, we present results from field and laboratory experiments on effects of a standard first-generation bioenergy crop (maize) and three different second-generation bioenergy crops (willow short rotation coppice (SRC), Miscanthus × giganteus, switchgrass) on key soil quality parameters: soil structure, organic matter, biodiversity and growth and disease susceptibility of a major follow-up crop, wheat (Triticum aestivum). We analysed a 6-year field experiment and show that willow SRC, Miscanthus, and maize maintained a high yield over this period. Soil quality parameters and legacy effects of Miscanthus and switchgrass were similar or performed worse than maize. In contrast, willow SRC enhanced soil organic carbon concentration (0–5 cm), soil fertility, and soil biodiversity in the upper soil layer when compared to maize. In a greenhouse experiment, wheat grown in willow soil had higher biomass production than when grown in maize or Miscanthus soil and exhibited no growth reduction in response to introduction of a soil-borne (Rhizoctonia solani) or a leaf pathogen (Mycosphaerella graminicola). We conclude that the choice of bioenergy crops can greatly influence provisioning of soil ecosystem services and legacy effects in soil. Our results imply that bioenergy crops with specific traits might even enhance ecosystem properties through positive legacy effects.

Keywords: life cycle assessment, maize, Miscanthus, short rotation coppice, soil ecosystem services, switchgrass, willow SRC

Received 25 August 2014 and accepted 10 November 2014

Introduction

There is increasing interest in transition towards a bio-based economy to produce food, feed, biofuels, construction materials, and bio-based products for the chemical industry in a more sustainable way (The White House, 2002; European Commission, 2005; Millennium Assessment, 2005). Bioenergy crops play a fundamental role in this transition. Until now, studies on the effects of bioenergy crops have focused primarily on analysing consequences for land use change, greenhouse gas (GHG) emissions, and soil biogeochemistry (Searchinger et al., 2008; Tilman et al., 2009; Djomo et al., 2011; Georgescu et al., 2011). In general, perennial second- or third-generation bioenergy crops (such as tall-growing perennial grasses and short rotation woody crops) are considered more favourable for reducing GHG emissions (Scharlemann & Laurance, 2008). However, consequences on soil biodiversity, the provisioning of soil ecosystem services, and legacy effects on future crops have received less attention. In this study, we evaluate immediate and lag (or legacy) effects of different bioenergy crops on soil ecosystem services.

During the past decades, intensification of agricultural practices has resulted in degradation of soil biodiversity and soil functioning (De Vries et al., 2012a; Hedlund & Harris, 2012). A worldwide decrease in soil organic matter content is thought to be one of the principal factors behind these observed changes (Bellamy et al., 2005; De Vries et al., 2012b). Lower soil organic matter content can result in lower water holding
capacity, cation exchange capacity, soil pathogen suppression, nutrient mineralization, and increased nutrient leaching (Workneh et al., 1993; Van Bruggen, 1995). Because the main purpose of bioenergy crops is to collect as much of the assimilated carbon dioxide as possible for the production of bioenergy and bioproducts, a further reduction in soil organic matter can be expected. Particularly, growing conventional agricultural crops (so-called first-generation bioenergy crops), where larger quantities of organic matter are removed (including crop residues e.g. straw, corn stubbles), may thus lead to a further depletion of the total organic carbon (TOC) pool in soils (Maskina et al., 1993; Lal, 2005). Second-generation bioenergy crops have been proposed as alternatives for first-generation bioenergy crops (Lemus & Lal, 2005; Blanco-Canqui, 2010). Previous studies have demonstrated positive impacts of some second-generation crops on soil organic matter (Frank et al., 2004; Liebig et al., 2008; Rooney et al., 2009; Jandl et al., 2012; Poepplau & Don, 2014; Zatta et al., 2014), soil structure (Pellegrino et al., 2011), and biodiversity (Pellegrino et al., 2011; Bourke et al., 2014). Absence of tillage and greater litter and root production by these crops may further enhance soil ecosystem services through an increase in the TOC pool in the soil (Six et al., 2000). However, not all studies show positive results of all second-generation bioenergy crops on soil functioning, particularly for soils at high initial soil organic matter (SOM) levels (Omonode & Vyn, 2006). Overall, the magnitude of benefits of second-generation bioenergy crops appears to depend on soil type, crop species, and management decisions (Blanco-Canqui, 2010). Rigorous comparisons between different first and second-generation crops are therefore needed to identify crops that are most adequate for both producing biomass and maintaining or improving soil functioning.

The specific aims of this study were to compare (1) the direct (immediate) effects of different second-generation bioenergy crops and one first-generation bioenergy crop on the provisioning of soil ecosystem services: biomass production, soil biodiversity, soil structure, and carbon storage, and (2) the indirect (legacy) effects of different bioenergy crops on soil as indicated by biomass production and disease susceptibility of the subsequent food/feed crop wheat (Triticum aestivum) under controlled conditions. We carried out field and laboratory experiments with different second-generation bioenergy crops: willow SRC (Salix fragilis cv. Belgian Red), switchgrass (Panicum virgatum cv. Kanlow), and Miscanthus (Miscanthus × giganteus). Additionally, we used yield data of two related bioenergy crops: Miscanthus sinensis and maize variety '34b49'. To avoid confusion in the text, we wrote all species in full when comparisons with these varieties were made (all references to Fig. 1, Tables 1 and 2). In the remainder of the text, 'maize' represents Z. mays var. Atletico and 'Miscanthus' represents M. × giganteus. Two other second-generation perennial bioenergy crops that were originally included in this experiment (Phalaris arundinacea, Phragmites australis) strongly decreased in yield after already two growing seasons, so that they could not be included in this study.

The field trial was set up according to a randomized split-plot block design with three replications. Each replicate (block) was divided into three sub-blocks, corresponding to the four cropping systems defined above (Fig. S1). Both maize varieties were sown between the last week of April and the first week of May, with a row distance of 0.75 m and density of 10 plants m⁻². Fertilizers were applied ten days after sowing (90 kg N ha⁻¹ yr⁻¹ as calcium ammonium nitrate, 50 kg P₂O₅ ha⁻¹ yr⁻¹ as triple super phosphate, 150 kg K₂O ha⁻¹ yr⁻¹ as potassium chloride (40%)), which is below the maximum allowed in Flanders for sandy loam soils. Herbicides were applied two days later at a ratio of 2 l ha⁻¹ Stomp (BASF Crop Protection) and 1.4 l ha⁻¹ Frontier (BASF Crop Protection). Maize was harvested at a dry matter (DM) content of approximately 30% (w/w), at the end of September – beginning of October with a three-row maize harvester C2200 (Kemper). Each growing season, maize soil was superficially tilled before sowing.

The sub-blocks of perennial second-generation bioenergy crops were installed in May 2007. The plots size was
Miscanthus was established by planting rhizomes at a spacing of 0.6 m within and between rows. Switchgrass was sown at a density of 1.5 g m\(^{-2}\) with a spacing of 0.6 m between rows. This was the only species for which only 4 sub-blocks were present, as a result of a mistake at the onset of the experiment (Fig. S1). Mechanical weed control was applied in early spring 2008. The plots were harvested once a year, with an Agria cutter bar (Möckühl, Germany), between the last week of February and the first week of March. Willow SRC was installed by cuttings of 15 cm at a density of two cuttings m\(^{-2}\). The planting scheme consisted of two twin rows (0.75 m apart) with 1.5 m between each set of twin rows. The within-row spacing was 0.5 m. Shortly after installation mechanical weed control was applied. No mineral fertilizers were applied. No herbicides or pesticides were used on any of the second-generation crops. Willow SRC was harvested twice during this experiment, in spring 2010 and 2013, at a height of 5–10 cm above the soil surface. More details on experimental setup can be found in Muylle et al. (2014).

Field sampling

Crop-specific effect on C and N fluxes. For both maize varieties, willow SRC and both Miscanthus species, data on crop residue biomass and composition were collected in a crop-specific manner. In case of SRC willow, Miscanthus and switchgrass, biomass produced in one year (e.g. 2012) was harvested in the next year (e.g. 2013). Crop yield was determined on an annual basis for all crops. Biomass removal was optimized by reducing the stubble height (<5 cm for maize varieties, willow SRC, and Miscanthus species). Annual yield for willow SRC was calculated by dividing yield by three. Roots and stubble of maize were sampled shortly after harvest in 2012. In each block, roots of three individual plants were collected and analysed and averaged for each of the two varieties. For willow SRC, fallen leaves were collected from the three plots between October and December 2012. Leaf fall of both Miscanthus species was collected between January and March 2013. The leaf fall collection for these crops was repeated in the next year with the same methodology. The rhizomes and remaining stubble of one individual plant of Miscanthus per treatment were sampled in April 2012 for each cultivar, that is, 5 years after plant establishment and shortly after harvest. In spring 2013, roots of willow SRC were sampled in each of the three blocks, both within and between rows, in a volume of 1.0 \(\times\) 0.5 \(\times\) 0.4 m deep (including two individual trees). Prior to analyses, plant samples were dried at 70°C and ground to pass a sieve of 1 mm in a plant mill (Fritsch Pulverisette 19). Plant C was determined by dry combustion at 1050°C with a Skalar Primacs SLC TOC-analyzer. N in harvested maize was measured according to ISO 5983-2 (block digestion/steam distillation method). Total N in other plant parts was determined with dry combustion (Dumas principle) with a Thermo flash 4000 according to ISO 16634-1. Neutral detergent fibre (NDF), acid detergent fibre (ADF), and acid detergent lignin (ADL) content in the dried compost samples was determined with an Ankom220 Fiber Analyzer extraction unit according to Van Soest et al. (1991). Based on NDF, ADF and ADL content, the holocellulose/lignin ratio was calculated as (%hemicellulose + %cellulose)/(%lignin), with % hemicellulose = %NDF–%ADF, and %cellulose = %ADF–%C.

Table 1 Total C and N stocks in aboveground and belowground crop compartments as measured in the field trial in Melle in the growing season of 2012 for the two varieties of maize, the two species of Miscanthus and willow SRC (third year of the cycle). Data are averages of 3 replicates

<table>
<thead>
<tr>
<th>Crop species</th>
<th>Fertilization kg N ha(^{-1}) yr(^{-1})</th>
<th>Total C stocks (kg C ha(^{-1}))</th>
<th>Total N stocks (kg N ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harvested Leaf fall + stubble Total</td>
<td>Harvested Leaf fall + stubble Total</td>
<td></td>
</tr>
<tr>
<td>Willow SRC</td>
<td>0</td>
<td>25 920 1774 7288 34 982</td>
<td>250 64 80 394</td>
</tr>
<tr>
<td>Miscanthus x giganteus</td>
<td>0</td>
<td>10 793 2160 1495 14 447</td>
<td>61 34 35 130</td>
</tr>
<tr>
<td>Miscanthus sinensis</td>
<td>0</td>
<td>6084 1217 1765 9065</td>
<td>50 28 39 117</td>
</tr>
<tr>
<td>Maize variety ‘34B39’</td>
<td>90</td>
<td>7217 0 1177 8394</td>
<td>165 0 22 187</td>
</tr>
<tr>
<td>Maize variety Atletico</td>
<td>90</td>
<td>7284 0 1160 8444</td>
<td>152 0 22 174</td>
</tr>
</tbody>
</table>

© 2014 John Wiley & Sons Ltd, GCB Bioenergy, 8, 136–147
NO3-N and NH4-N, using KCl extraction. After 25 ml of demi sample (12.5 g of field soil) was air-dried at 70°C during 48 h. The TOC concentration in the soil was measured on oven-dried (70°C) soil samples using dry combustion at 1050°C with a Skalar Primacs SLC TOC-analyzer, according to ISO 10694. Total N content was determined by dry combustion (Dumas principle) with a Thermo flash 4000 according to ISO 13878.

Total net N mineralization was determined using a subsample of 25 ± 2 g of field soil was air-dried at 70°C during 48 h. The TOC concentration in the soil was measured on oven-dried (70°C) soil samples using dry combustion at 1050°C with a Skalar Primacs SLC TOC-analyzer, according to ISO 10694. Total N content was determined by dry combustion (Dumas principle) with a Thermo flash 4000 according to ISO 13878.

Total net N mineralization was determined using a subsample of 25.0 ± 0.1 g. This sample was split into two. Half of the sample (12.5 g ± 0.05 g) was used to determine availability of NO3-N and NH4-N, using KCl extraction. After 25 ml of demi water was added, the sample was incubated on a flatbed shaker (250 rpm, 2 h) and pHH2O was determined. Afterward, 25 ml of 2 M KCl was added to each sample, and samples were again incubated on a flatbed shaker for 2 h at 250 rpm. Clear 1.5 ml KCl extractions were obtained by centrifuging at 10 285 g, and samples were stored at −20°C for one month, after which availability of NO3-N and NH4-N was determined using an autoanalyser (SEAL QuAAtro SFA system, Beun- de Ronde B.V. Abcoude, The Netherlands). The other half of the sample was incubated at 20°C in the dark for 20 days at constant moisture conditions, after which NO3-N and NH4-N availability was determined using the same procedure. The difference between the plant available N in both measurements was taken as the potentially mineralized NO3-N and NH4-N.

Soil aggregates were determined using wet sieving (mesh sizes 2 mm, 0.5 mm, 0.25 mm), using the method of Six et al. (1998). The smallest mesh size (53 μm) was discarded because of the high sand content.

Soil biota. Composite samples were homogenized thoroughly, and nematodes were extracted from a 100 g subsample using an elutriator (Oostenbrink, 1960). Nematodes were identified to family level from a sample of 100 ml of soil. The first 100 individuals of each sample were identified, and the total number of nematodes was determined by counting all nematodes in 1/10 of the sample. Maturity index was calculated following Bongers (1990). Nematode communities were analysed using multivariate statistics (NMDS) in R (Version 3.0.1), based on the number of individuals per nematode family.

Differences in fungal and bacterial biomass, fungal/bacterial ratio, and biomass of arbuscular mycorrhizal fungi (AMF) among soils from the different bioenergy crops were assessed using phospholipid-derived fatty acids (PLFA) and neutral lipid fatty acids (NLFA), respectively, from a subsample of 6 g of freeze-dried dried soil. The PLFAs i-15:0, a-15:0, 15:0, i-16:0, 17:0, cyclo-17:0, 18:1v7 and cyclo-19:0 were used as bacterial markers and PLFA 18:2v6 was used as an indicator of fungal biomass (Frostegård & Bååth, 1996). The ratio of fungal to bacteria was used as an indicator of shifts in the relative abundance of these groups (Bardgett et al., 1996). NLFA 18:2v6 was used to determine AMF biomass (Ngosong et al., 2012). Extraction of microarthropods was carried out by transferring soil samples directly to Tullgren extraction funnels with mesh size 1 mm (Siepel, 1996).
Individuals were stored in 70% alcohol and identified to morphospecies. Earthworms were hand sorted in situ and counted. Plant species cover and richness in the understory of the different plots of maize, Miscanthus, switchgrass, and willow SRC were recorded in August 2013 in each 2 × 2 m sampling plot (Fig. S1), using a decimal scale (Londo, 1976). To use vegetation composition as an estimation of the soil fertility, we calculated the average Ellenberg N (Ellenberg et al., 1991) for each of the plant communities (Schaffers & Sýkora, 2000).

Greenhouse experiment

From each of the six sub-blocks from Miscanthus × giganteus, willow SRC, and maize var. Atlantico, five intact soil cores of 22 cm deep and 12 cm diameter were taken on 27 September 2012, resulting in a total number of 90 cores. To avoid regrowth of bioenergy crops, all cores were taken at least 15 cm away from the nearest plant. Coarse litter, mosses, and living plants were removed from the top of these cores. Cores were assigned to five different treatments: (1) a soil pathogen treatment, (2) a leaf pathogen treatment, (3) a nutrient treatment, plus two control treatments: (4) a leaf pathogen control treatment (henceforth LP control) and (5) a soil pathogen + nutrient control treatment (henceforth S + N control). The LP control was installed because growing conditions of the leaf pathogen treatment were quite different from the other three treatments. Each treatment included 18 cores: 6 cores from each of the three bioenergy soils.

Two days after transport to the laboratory, nine wheat seeds (Triticum aestivum cv. Carenus) were sown in all soil cores, in a grid with 3 cm between the seeds, at a depth of approximately 5 mm. Prior to planting, all seeds had been sterilized with 5% bleach for 3 min and rinsed off with demineralized water. Seeds that had not emerged after 1 week were sown again. To maintain a constant number of seedlings in all pots, we removed all new seedlings when there were already five per pot. Pots were watered three times per week, with 30 ml per week in the first two weeks and 60 ml per week in the following weeks. Weeds were removed every 7 days.

To test soil suppressiveness against fungal pathogens, we inoculated one treatment with a soil pathogen (Rhizoctonia solani AG13) and one treatment with a leaf fungal pathogen (Mycosphaerella graminicola). In the soil pathogen treatment, 0.3 mm agar plugs from a 5-day culture of Rhizoctonia solani AG13 were inserted 7 days after the seedling emergence, at 0.5–1 cm below the base of two average sized seedlings in each pot. In the S + N control, sterile agar plugs were inserted below the base of two average sized seedlings.

In the leaf pathogen treatment and the LP control, 6 cores per soil type (18 cores in total) were placed in separate chambers with RH 95-100%, to maintain high humidity and minimize contamination risk to the other treatments. Yeast-like cells of Mycosphaerella graminicola were grown in liquid yeast-sucrose medium (YSM; yeast extract 10 g l⁻¹, sucrose 10 g l⁻¹). The medium was distributed in 250-ml flasks, and a small plug of the isolate of M. graminicola IPO 323 was transferred into the liquid medium. The inoculated liquid medium was cultured on a flatbed shaker at 150 rpm and 18°C, for 8 days when spore concentration typically is around 10⁶–10⁸. Each pot in the leaf pathogen treatment received 2 ml of inoculum, which was dispersed using a hand-held sprayer, on the same day that all pots were placed in the high-humidity chamber. LP controls were sprayed with a similar amount of demineralized water.

To detect the carry-over effect of this leaf pathogen on plant quality, we used a leaf herbivore, three (flightless) adults, and seven juvenile aphids of the Gramineae-specific aphid Rhopalosiphum padi were introduced on all pots in the leaf pathogen treatment and the LP control. Aphids could disperse freely between pots within each treatment as leaves of the plants were touching each other. Two days after introduction of aphids, adult and juvenile aphid abundance was determined by recollecting aphids from all pots.

The nutrient treatment was installed to examine for the effect of nutrients on wheat growth. In this treatment, 10 grams of dried cow manure (mineral N = 2.9%, P₂O₅ = 3.2%, K₂O = 3.7% on DM) was mixed through the first centimetre of soil prior to sowing.

Plants from all treatments were harvested 49 days after sowing. Aboveground biomass was estimated for each individual plant, both fresh and dry, while dry belowground biomass was determined only for the whole pot.

Data handling and statistics

To test for differences among effects of bioenergy crops on soil parameters, we used a nested ANOVA design, because subplots were not independent within block, ‘Crop species’ and ‘block’ were used as fixed factors, and ‘sub-block’ was nested in ‘block’. This was carried out for the field results, as well as for the greenhouse study. Interaction effects between crop and block were not included in the final model as they were not significant. Differences among crop-specific effects on C and N fluxes and earthworm abundances were tested using a one-way ANOVA as only one of the sub-blocks in each of the blocks was sampled. Prior to each analysis, a Kolmogorov–Smirnov test was carried out to check for a normal distribution of the response variable. Residuals were also checked on normality, and data were checked on homogeneity of variances. To meet assumptions on normality, data of species abundance of microarthropods and earthworms were log-transformed prior to analysis. C:P values for nematode communities in the different treatments were compared using a paired t-test. Post hoc Tukey’s tests were carried out to check for differences between treatments. All statistics were carried out using Statistica 11.0, and graphs were made using SigmaPlot 12.5. A Bray–Curtis dissimilarity metric was used to determine distances between the sampling points, for which we used metaMDS function in the R vegan package (Anonymous, 2011; Oksanen et al., 2011).

Results

Crop yields, biochemical composition and effects of bioenergy crops on C and N fluxes

From 2009 to 2013, average crop yield was highest for Miscanthus × giganteus (21.8 ± SD 4.9 t dry matter
The yearly N flux from soil to the crop was highest for both maize varieties (appr. 160 kg N ha\(^{-1}\)), intermediate for willow SRC and lowest for Miscanthus × giganteus (appr. 95 kg N ha\(^{-1}\)). N return to the soil was strongly different between crops. For both maize varieties, only 15% of N in crop returned as stubble and root biomass, while at least 30% of the N in the total aboveground biomass was recycled through leaf fall for willow SRC and both Miscanthus species (Table 1). Besides differences in C and N fluxes, we also observed differences in biochemical composition and HC/L ratio of the plant parts (Table 2). A comparison among the three most productive bioenergy crops (willow SRC, maize var. Atletico, Miscanthus × giganteus) shows clear differences in lignin content in leaf litter (\(F_{2,13}=303.1, P < 0.001\)). A post hoc Tukey’s test shows 4x higher lignin content in willow SRC than in maize (\(P < 0.001\)) and twice as high as to Miscanthus (\(P < 0.01\)).

Effects of bioenergy crops on soil parameters

Total organic carbon (TOC) concentration in the upper (0–5 cm) soil layer was different among bioenergy crops (\(F_{3,13}=8.7; P < 0.005\)). TOC was higher in willow SRC than in Miscanthus, switchgrass, or maize (Fig. 2). No significant differences in TOC were found between maize, Miscanthus and switchgrass (Fig. 2). Potential N mineralization was different among bioenergy crops (\(F_{3,13}=11.3; P < 0.001\), Fig. 2) and was higher in willow SRC than in maize soil (Tukey’s test: \(P < 0.001\)). There was a correlation between TOC and potential N mineralization, indicating that soil fertility increased with organic carbon content (\(R^2=0.25, P = 0.02\)).

A comparison between four bioenergy crop species showed significant differences in total soil aggregation among soils (\(F_{3,13}=37.9; P < 0.001\)), indicating differences in biological activity. Of the different fractions, only the microaggregate fraction was significantly different among bioenergy crops (Fig. 3). Soil pH\(_{1,0}\) was
also different among crops ($F_{(3,13)} 15.1, P < 0.001$), with the highest mean value in willow SRC and the lowest value in maize (6.62 vs. 6.09, Tukey’s test: $P < 0.001$; Fig. S2A).

Earthworm abundances were not different among willow SRC, Miscanthus and switchgrass. However, in all these crops abundances were ten-fold higher than in maize ($F_{(3,5)} 54.4; P < 0.001$; Fig. S2B). Soil arthropod abundance and diversity were higher in willow SRC than in maize soil (Fig. 4). There was no difference in the number of nematode families or nematode abundances among the different soils. However, the CP value (maturity index) for willow SRC (2.8) was higher than for maize (2.3), ($t_{(5)} 3.1, P = 0.02$), indicating a more ‘mature’ nematode community with higher numbers of predators and omnivores in the willow SRC plots. No significant differences were found for CP values between maize and Miscanthus. The multivariate analysis, which was based on the number of individuals in each nematode family, also shows divergence between nematode communities in the different soils (Fig. S3).

Results from the PLFA analyses indicated differences in fungal and bacterial biomass among bioenergy crops (fungi: $F_{(3,12)} 10.2, P = 0.001$; bacteria: $F_{(3,12)} 4.5, P = 0.02$; Fig. 5a). Fungal/bacterial (F/B) ratio was higher in willow SRC than in maize (Tukey: $P = 0.001$) and Miscanthus (Tukey: $P = 0.004$; Fig. 5b). AMF biomass (NLFA 16:1o5) was higher in switchgrass than in the other crops ($F_{(3,12)} 9.5, P = 0.002$); no significant differences were found in AMF biomass between the other crops (Fig. S4).

Cover of understory vegetation was different between crops ($F_{(3,13)} 20.0, P < 0.001$), with the highest cover in willow SRC (29.1%) and the lowest in maize (0.2%). Vegetation Ellenberg N values were not different among willow SRC (6.3), Miscanthus (6.2), and maize (6.0), but were lower for switchgrass (4.9) ($F_{(3,9)} 5.2, P = 0.02$; Fig. S5), indicating lowest fertility in switchgrass plots.

Legacy effects of bioenergy crops on wheat growth

Wheat biomass in the greenhouse bioassay was highest on willow SRC soil cores, over all treatments, both aboveground ($F_{(2,44)} 23.4; P < 0.001$; Fig. 6) and belowground ($F_{(2,44)} 6.8; P = 0.003$; data not shown). In the S + N control, wheat biomass on willow SRC soil was almost twice as high as on Miscanthus and maize soil ($F_{(2,9)} 11.8, P = 0.004$). In the nutrient treatment, biomass of wheat was on average 150–200% higher than in the S + N control ($F_{(1,27)} 131.1, P < 0.001$; Fig. 6). With
the exception of the nutrient treatment, no differences were found among the treatments on willow SRC soil. Total wheat biomass in the soil pathogen treatment was not different from the S + N control (interaction soil type × treatment: $F_{(2,28)} 4.90; P = 0.01$; Fig. 7a). However, when focusing only on the plants that were directly infected with $R. \ solani$, we found a reduction in wheat biomass in plants that were infected with $R. \ solani$, compared with plants in the S+N control ($F_{(2,28)} 4.13; P = 0.03$, Fig. 7b). This difference was significant for Miscanthus soil (Tukey, $P = 0.03$; Fig. 7a), while the difference on maize soil was marginally nonsignificant (Tukey, $P = 0.09$; Fig. 7b). Also, wheat biomass on Miscanthus soil was significantly lower in the presence of soil pathogens than in the control treatment ($F_{(2,28)} 4.13; P = 0.03$, Fig. 7b).

Our results show a pronounced effect of previous crop and pathogen infection on aphid abundance. After 48 h, wheat plants on willow SRC soil had 1.5 times more adult aphids and two times more juvenile aphids than plants on maize or Miscanthus soil, but no difference was recorded between the number of aphids on wheat on Miscanthus soil or maize soil (Figs 8a,b). Juvenile aphid numbers were lower on wheat growing on maize and Miscanthus soils when plants were infected with $M. \ graminicola$, whereas on willow SRC soil aphid numbers were not statistically different between pathogen-infected and noninfected plants.

Discussion

Growth of bioenergy crops should not go at the expense of the provisioning of soil ecosystem services (Lal, 2005). To produce yields in a sustainable way, crops need to improve or maintain soil functioning rather than decrease it (sensu Foley et al., 2005). Our results show pronounced differences among bioenergy crops and their effects on the provisioning of soil ecosystem services including water retention, soil fertility, and pathogen suppression. Three of the four studied crops sustained high yields during a period of 6 years. Yields of maize could only be sustained by substantial fertilizer application. The fourth crop, switchgrass had almost 50% lower yield than the highest yielding crop, Miscanthus, which is in line with other recent estimates (Arundale et al., 2014). Therefore, we excluded switchgrass from further discussion. In the present trial,
willow SRC had the most positive effect on provisioning soil ecosystem services, when compared to maize, and had positive effects on the follow-up crop, wheat. *Miscanthus* and switchgrass, on the other hand, did not provide a soil legacy that was substantially different from maize.

Compared with maize, willow SRC had an overall positive effect on soil abiotic and biotic properties and subsequent wheat crop growth. In contrast, the other second-generation bioenergy crop, *Miscanthus* had a negative effect on wheat production when compared to maize. As soil pH was well into the range for optimal wheat growth (Islam *et al.*, 1980), it appears unlikely that crop-specific effects on pH have been driving the observed differences in soil legacy between the bioenergy crops in this trial. It seems more likely that the legacy effects are crop species specific.

Effect of bioenergy crops on C and N fluxes

Our results show that soil under willow SRC has a higher soil fertility and soil carbon than any of the other bioenergy crops. Key to understanding the effects of the different crops on soil ecosystem functioning is the crop-specific impact on C and N fluxes to the soil in the form of crop residues. *Miscanthus* is known to translocate the majority of N to belowground organs in autumn (83% according to Long *et al.*, 2001). Our results show that maize returns only 15% of N to the soil via roots and stubbles. Willow, on the other hand, translocates only 40–50% of N to its roots in autumn (Von Fircks *et al.*, 2001). This results in substantial differences in the amount of N that is returned to the soil. For willow SRC, most of the N returns to the soil via leaf fall, whereas N content in leaf fall is negligible for *Miscanthus*. As a result willow enhances fertility in the upper soil layer, whereas maize and *Miscanthus* have far lower soil fertility. Likewise, differences in TOC can be ascribed to crop-specific differences in carbon return to the soil surface. Several studies have reported a positive effect of woody crops on TOC, often with the strongest increase in the top layer (Grogan & Matthews, 2002; Liberloo *et al.*, 2009; Blanco-Canqui, 2010; Hellebrand *et al.*, 2010; Lasch *et al.*, 2010), thus supporting our results. Another study that compared different bioenergy crops also found more positive effects of willow SRC on TOC than switchgrass, *Miscanthus* or maize (Zan *et al.*, 2001). Some studies have reported or modelled an increase in SOM levels after planting switchgrass and *Miscanthus* (Beuch *et al.*, 2000; Kahle *et al.*, 2001; Qin *et al.*, 2012), but others found no effect, or effects that were strongly dependent on soil type and initial organic matter percentage (Bainard *et al.*, 2013). This result may seem counterintuitive, given that the total biomass production in *Miscanthus* was higher than in willow SRC.

Besides, willow litter had the lowest C:N ratio. An explanation could be that, besides a lower C:N ratio, willow leaf litter also had a higher recalcitrant fraction (lignin) (Table 2). Previous studies on organic matter formation have shown that lignin forms an important contribution to the organic matter pool (Berg, 2000; Liberloo *et al.*, 2009). Moreover, high N availability, as found for willow leaf fall, may strongly retard degradation of
lignin (Berg, 2000). Our results therefore suggest that the high lignin input of willow leaves plays a key role in increasing the TOC levels in willow SRC top soil.

Arbuscular and ectomycorrhizal fungi (AMF and EEM) play a major role in soil carbon sequestration (De Deyn et al., 2008; Rooney et al., 2009), but in general, EEM fungi have been found to be more important for carbon sequestration than AMF (Averill et al., 2014). Indeed, results from our PLFA/NLFA analysis show that switchgrass soil had the highest AMF biomass, but the lowest TOC levels, suggesting that AMF do not play a major role in sequestering soil carbon in our experiment. Cropping willow SRC, on the other hand, resulted in a stronger increase in TOC than any of the other crops, suggesting that EEM fungi under willow could play an important role in soil carbon sequestration. Willow SRC soils also had a more aggregated soil and a greater soil biodiversity. This result is largely in line with those from agroforestry experiments (Barrios et al., 2012), suggesting that growing woody plants, together, or in rotation with herbaceous crop species might enhance both soil properties and crop performance.

Our results show positive legacy effects of willow SRC on a subsequent crop. Wheat biomass on willow SRC soil was higher than on maize or Miscanthus soil. Again, this opposes our hypothesis because we expected similarly positive effects for all second-generation bioenergy crops. These results likely reflect the crop-specific changes in soil physical parameters. Crop-specific changes in TOC levels could explain the legacy effect on a subsequent crop in different ways. Higher TOC levels under willow SRC may lead to higher soil fertility (Janzen, 2006), which could enhance biomass production of a subsequent crop. Indeed, we found higher potential N mineralization in soil from willow SRC than from all other crops. However, nutrient additions in the greenhouse did not completely remove the differences in wheat growth among soils, suggesting that changes in soil fertility alone cannot explain the positive effects of willow SRC on wheat growth.

Higher TOC levels may contribute to greater pathogen suppression through a higher overall soil activity and increased fungal/bacterial ratio (Hoitink & Boehm, 1999; Van Bruggen & Semenov, 2000; Garbeva et al., 2006). Our results showed that willow SRC soils had higher organic C levels and fungal and bacterial biomass, which may explain stronger disease suppression (Hoitink & Boehm, 1999; Raaijmakers et al., 2009). Alternatively, salicylic acid can be excreted by willows in substantial quantities (Schmidt et al., 2000), which could have triggered the salicylic acid pathway in plants (Jayaraj et al., 2004), thus resulting in disease suppression. However, a previous study on willow suggests that salicylic acid under willow is short-lived as it is quickly metabolized by salicylic acid degrading microorganisms (Schmidt et al., 2000). This would suggest that the time between taking soil cores from the field and growth of the young wheat seedlings (five days) may have been too long for the salicylic acid to remain intact in the soil matrix.

The question remains whether the positive effects of willow SRC as a second-generation biomass crop on soil ecosystem properties is unique to willow species or represent a more general phenomenon. Recent results from long-term poplar plantations seem to point at a similar conclusion (Sierra et al., 2013), suggesting that a wider range of tree species may have similar positive effect on soil legacy. Another important question is how long positive legacy effects can remain. If operating via an increase in TOC, insight is needed into long-term TOC dynamics in agricultural soil. Especially if TOC becomes stabilized in soil aggregates, as suggested by our results, these effects may be long lasting (Six et al., 2000). However, tillage is known to disrupt aggregates and decrease TOC (Six et al., 1999), so that the length of the legacy effect may depend on till vs. no till management.

Ultimately, the magnitude and longevity of the positive legacy effects will be critical determinants for farmers’ decisions on which bioenergy crop to grow. Particularly in soils with higher TOC concentrations effects of bioenergy crops on TOC concentration may be small (Blanco-Canqui, 2010). Therefore, including willow SRC plantations in crop rotation could be particularly beneficial on soils with low OM levels. Recent reports on reductions in soil organic matter levels (Bellamy et al., 2005; Taghizadeh-Toosi, 2014) illustrate that inclusion of ecosystem function promoting bioenergy crops in the rotation deserves serious attention.

Conclusions and perspectives

Our results show that of three second-generation crops tested willow SRC had the most positive effects on soil structure, soil fertility, soil biodiversity, and pathogen suppression in a follow-up crop. For the selected energy crops in the field trial, we found substantial differences in N and C cycling, probably as a result of crop-specific biochemical characteristics of the produced organic matter. These differences resulted in greater soil fertility and TOC levels in soil under willow SRC than in soil from each of the other second-generation bioenergy crops.

Our results also suggest that the use of bioenergy crops to augment soil ecosystems services requires careful implementation because not all crops influence soil ecosystem services equally well (Brussaard et al., 2004;
Foley et al., 2005; Hedlund & Harris, 2012). Future research should focus on the question whether (1) this effect occurs in the whole spectrum of soil textures and (2) willow species all have similar effects and if they are unique in this respect. Beneficial soil legacy effects (and the lack thereof) should be taken into account in future life cycle assessments of bio-based cropping systems. In addition, crops with positive legacy effects should be considered in future crop rotations or on soils with low TOC levels.

Acknowledgements

We are greatly indebted to many members of the ILVO and NIOO teams who helped with sampling and measurements. Special thanks go to Pieter Cremelie for the extraction of the PLFA/NLFAs. We are grateful to Puck Oomen and Rosa Keijzer for their help with setting up the laboratory experiment, and to Maarten De Bie for performing the willow root sampling. We want to thank Jos Raaijmakers and Emilie Chapelle for kindly providing Rhizoctonia solani AG13 and Gert Kema and Lamia Aouinni for providing Mycosphaerella graminicola. We also thank Jeroen van Schaik for providing Rhopalosipum padii. We thank Wim Dimmers for assistance on arthropod extractions and identification. This research was supported by BE-Basic Grant 8.002.04 to WHvdP and partly financed by project BOD/STUD/2011/02 (Flemish Government).

References

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Overview of measurements that were collected in each of the bioenergy crops.

Figure S1. Experimental field setup with position of all bioenergy crops.

Figure S2. (A) Soil pH\textsubscript{\text{H}_2\text{O}} and (B) earthworm numbers in each of the different bioenergy crops in 2012.

Figure S3. Changes in nematode community composition A) Differences in CP-values between different bioenergy crops.

Figure S4. AMF biomass (in mg/kg dry soil) as calculated from NLFA 16:1\text{\text{\text{o}}} for four different bioenergy crops.

Figure S5. Average cover and average Ellenberg N value for understory plant communities in different bioenergy crops.

Figure S6. Belowground dry matter biomass of wheat plants (in grams) in the nutrient treatment (left) and control treatment (right).