Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia

L. Lombard¹, G. Polizzi², V. Guarnaccia², A. Vitale², P.W. Crous¹

Abstract Calonectria spp. are important pathogens of ornamental plants in nurseries, especially in the Northern Hemisphere. They are commonly associated with a wide range of disease symptoms of roots, leaves and shoots. During a recent survey in Tunisia, a number of Calonectria spp. were isolated from tissues of ornamental plants showing symptoms of leaf spot, crown and root rot. The aim of this study was to identify these Calonectria spp. using morphological and DNA sequence comparisons. Two previously undescribed Calonectria spp., C. pseudomexicana sp. nov. and C. tunisiana sp. nov., were recognised. Calonectria mexicana and C. polizzii are newly reported for the African continent. Pathogenicity tests with all four Calonectria spp. showed that they are able to cause disease on seedlings of Callistemon spp., Dodonaea viscosa, Metrosideros spp. and Myrtus communis.

Article info Received: 5 September 2011; Accepted: 15 October 2011; Published: 18 November 2011.

INTRODUCTION

Past reports have shown that C. morgani and C. pauciramosa are the most common Calonectria spp. found in ornamental nurseries in the Northern Hemisphere (Polizzi & Crous 1999, Polizzi 2000, Polizzi & Catara 2001, Polizzi et al. 2006a, b, 2007a, b). Based on phylogenetic studies, C. morgani appears to be restricted to Brazil, Europe and the USA (Crous et al. 1993, Overmeyer et al. 1996, Schoch et al. 2000), whereas C. pauciramosa has a more global distribution and has been shown to better adapt to different environmental conditions (Crous 2002, Lombard et al. 2010b, Chen et al. 2011). Calonectria pauciramosa was also regarded as the dominant pathogen in nurseries in Australia and South Africa (Crous 2002, Schoch et al. 2001, Lombard et al. 2010b).

In November 2010, a survey was conducted in an ornamental nursery in Carthage, Tunisia. Various plant species were collected showing symptoms of leaf spots, crown and root rot. Isolations consistently yielded Calonectria spp. and the aim of this study was to identify these species, and confirm their pathogenicity.

MATERIALS AND METHODS

Disease survey and isolates

During November 2010, an ornamental nursery located in Carthage, Tunis, Tunisia was surveyed for diseased plants. Several samples of Callistemon spp., Dodonaea viscosa, Myrtus communis and Metrosideros spp. showing leaf spots, crown and root rot were randomly collected for analysis (Fig. 1, Table 1). Infected tissues collected from symptomatic plants were superficially disinfected with 1.0 % sodium hypochlorite for 2 min, rinsed with sterile water, placed on potato-dextrose agar (PDA, Oxoid) and incubated in the dark at 24 °C. Representative isolates of Calonectria from each ornamental species were obtained from single-spore colonies made from 14 d old cultures grown on PDA. Representative isolates have been deposited at the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, The Netherlands (Table 1).

DNA sequence comparisons

Total genomic DNA was extracted from single-conidial isolates grown on 2 % malt extract agar (MEA) for 7 d, using the Ultra-Clean™ Microbial DNA isolation kits (Mo Bio Laboratories, Inc., California, USA) according to the manufacturer’s protocol. Partial gene sequences were determined for β-tubulin (BT), histone H3 (HIS3) and translation elongation factor-1α (TEF-1α) using the primers and protocols described by Lombard et al. (2010c).

To ensure the integrity of the sequences, the amplicons were sequenced in both directions using the same primer pairs used for amplification. Sequence data from Lombard et al. (2010b, d) were used as reference data and subsequent alignments were generated using MAFFT v. 6 (Katoh & Toh 2010) and manually corrected where necessary. Congruency of the sequence datasets for the separate loci was determined using tree topologies of 70 % reciprocal Neighbour-Joining bootstrap trees with Maximum Likelihood distances that were compared visually to identify conflicts between partitions (Gueidan et al. 2007). Molecular evolution models for the separate gene regions were determined in Modeltest v. 3.7.
Persoonia – Volume 27, 2011

(Posada & Crandall 1998) and bootstrap analyses were run for 10 000 replicates.

PAUP (Phylogenetic Analysis Using Parsimony, v. 4.0b10, Swofford 2002) was used to analyse the DNA sequence datasets. Phylogenetic relationships were estimated by heuristic searches with 1 000 random addition sequences and tree bisection-reconnection was used, with the branch swapping option set on ‘best trees’ only. All characters were weighted equally and alignment gaps were treated as missing data. Measures calculated for parsimony included tree length (TL), consistency index (CI), retention index (RI) and rescaled consistency index (RC). Bootstrap analysis (Hillis & Bull 1993) was based on 1 000 replications.

A second phylogenetic analysis using a Markov Chain Monte Carlo (MCMC) algorithm was done to generate trees with Bayesian probabilities in MrBayes v. 3.1.1 (Ronquist & Huelsenbeck 2003). Nucleotide substitution models were determined using MrModeltest (Nylander 2004) for each gene region and included in the analyses. Two analyses of four MCMC chains were run from random trees for one million generations and sampled every 100 generations. All runs converged on the same likelihood score and tree topology and therefore the first 800 trees were discarded as the burn-in phase of each analysis and posterior probabilities determined from the remaining trees.

The phylogenetic analyses included 46 partial gene sequences for each gene region, representing 20 Calonectria spp. (Table 1). Calonectria colombiensis (CBS 112221) and C. chinensis (CBS 112744) were used as outgroup taxa in both analyses (Lombard et al. 2009). All novel sequences were deposited in GenBank and the alignments in TreeBASE (http://www.treebase.org).

Taxonomy

Morphological characterisation of the Calonectria isolates was done using single conidial cultures prepared on MEA and synthetic nutrient-poor agar (SNA; Nirenburg 1981, Lombard et al. 2009). Inoculated plates were incubated at room temperature and examined after 7 d. Gross morphological characteristics of the anamorph state were determined by mounting fungal structures in clear lactic acid and 30 measurements at ×1 000 magnification were made for each isolate using a Zeiss Axioscope 2 microscope with interference contrast (DIC) illumination. The 95 % confidence levels were determined and extremes of conidial measurements are given in parentheses. For other structures, only extremes are presented. Colony characteristics were noted after 7 d of growth on MEA at 24 °C and colony colours determined using the colour charts of Rayner (1970). Descriptions, nomenclature and illustrations were deposited in MycoBank (Crous et al. 2004).

Pathogenicity

In order to test the pathogenicity of the Calonectria spp. collected in this study, seven isolates representing different Calonectria species identified by morphology and DNA sequence comparisons were selected for inoculation trials (Table 1). A conidial suspension (1.0 × 10⁵ conidia/mL) was prepared for each isolate by adding sterile water to plates of carnation leaf agar (CLA; Fisher et al. 1982) 7 d after inoculation and dislodging the conidia. The conidial suspension of the isolate CBS 130351 was also applied to the crown of M. communis plants (10 mL/plant). All plants were subsequently covered with plastic bags for 48 h and maintained.
in a growth chamber at 25 ± 1 °C for 14 d. Five plants for each isolate and host were used and the same number of control plants were treated using sterile water. Pathogenicity tests were evaluated 5, 10 and 25 d after inoculation.

RESULTS

Disease survey and isolates

During the survey, a total of 46 Calonectria isolates were collected from ornamental hosts sampled. Majority of the isolates (41) were associated with leaf spots or leaf blight of Callistemon spp. (18), D. viscosa (1), Metrosideros spp. (17) and Myrtus communis (5), and the remaining (5) with crown and root rot of M. communis. Leaves showed minute brown spots, which often enlarged, forming a necrotic centre surrounded by a dark purple halo (Fig. 1). Young, non-lignified terminal shoots often enlarged, forming a necrotic centre surrounded by a dark purple halo (Fig. 1). Several isolates were obtained with maximum parsimony including bootstrap support.

DNA sequence comparisons

Amplicons of approximately 450 bases for HIS3 and 500 bases each for BT and TEF-1α were generated. The 70 % reciprocal bootstrap trees showed no conflict in tree topologies for the three gene regions and therefore they were combined in a dataset consisting of 1 532 characters including gaps. Of these characters, 1 187 were constant and parsimony uninformative. Analysis of the 345 parsimony informative characters yielded 16 equally most parsimonious trees (TL = 814, CI = 0.721, RI = 0.923, RC = 0.666), of which the first tree is presented (Fig. 2). A HKY+I model for BT, a GTR+I+G model for HIS3 and a GTR+G model for TEF-1α was selected for Bayesian analysis. The Bayesian consensus tree confirmed the tree topology obtained with maximum parsimony including bootstrap support. The phylogenetic tree illustrates a number of well-supported clades containing the Calonectria isolates obtained during the survey. Some of the isolates clustered in a clade representing C. polizzi with a bootstrap value (BP) of 97 and a Bayesian posterior probability (PP) value of 1.00. Several isolates also grouped with and close to C. mexicana in two separate well-supported clades (BP = 68, PP = 0.95 and BP = 78, PP = 0.98, respectively), which could represent novel phylogenetic species.
Fig. 2 One of 16 most parsimonious trees obtained from a heuristic search with 1 000 random addition sequences of the combined sequences of β-tubulin, histone H3 and translation elongation factor 1α sequence alignments of the *Calonectria* isolates obtained during the survey and other closely related species. Scale bar shows 10 changes. Bootstrap support values (in bold) and Bayesian posterior probability values are shown at the nodes. Thickened lines indicate branches in the strict consensus tree and the consensus tree of the Bayesian analyses. The tree was rooted to *C. chinensis* (CBS 112744) and *C. colombiensis* (CBS 112220). Isolates in bold were obtained during the survey.

Taxonomy

DNA sequence and morphological comparisons of the *Calonectria* isolates obtained during the survey show that these isolates belong to *C. mexicana* and *C. polizzii* and also constitute two previously undescribed taxa. Based on morphological comparisons, isolate CBS 130353 agrees with *C. mexicana* (Schoch et al. 1999) and isolates DISTEF-TMC2, CBS 130351, DISTEF-TMEA1, DISTEF-TMN3 and CBS 130352 represent *C. polizzii* (Lombard et al. 2010b). The remaining isolates are newly described as follows:

Calonectria pseudomexicana Lombard, G. Polizzi & Crous, *sp. nov.* — MycoBank MB563138; Fig. 3

Teleomorph unknown.

Calonectria mexicana morphologicae similes sed minus ramis conidiophorae.

Etymology. Name reflects the fact that this species closely resembles *C. mexicana*.

Conidiophores with a stipe bearing penicillate suites of fertile branches, stipe extensions, and terminal vesicles; stipe septate, hyaline, smooth, 38–69 × 5–9 µm; stipe extensions septate, straight to flexuous, 175–251 µm long, 3–6 µm wide at the apical septum, terminating in a fusiform to broadly ellipsoidal vesicle...
9–14 µm diam with papillate apex. **Conidiogenous apparatus** 38–68 µm long, 32–64 µm wide; primary branches aseptate or 1-septate, 21–43 × 4–7 µm; secondary branches aseptate, 13–26 × 4–7 µm; tertiary branches and additional branches (–4), aseptate, 10–18 × 2–6 µm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 6–14 × 2–6 µm; apex with minute periclinal thickening and inconspicuous collarette. **Conidia** cylindrical, rounded at both ends, straight, (40–)43–48(–49) × (4–)5–6 µm (av. = 45 × 5 µm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Megaconidia and microconidia not seen.

Culture characteristics — Colonies fast growing at 24 ºC on MEA, sienna to bay on surface, reverse sienna after 7 d; moderate white aerial mycelium with sparse to moderate sporulation; chlamydospores extensive throughout medium.

Notes — *Calonectria pseudomexicana* is morphologically similar to *C. mexicana*. *Calonectria pseudomexicana* has four or less conidiophore branches while *C. mexicana* has five as reported by Schoch et al. (1999).

Calonectria tunisiana L. Lombard, G. Polizzi & Crous, sp. nov. — MycoBank MB563139; Fig. 4

Teleomorph unknown.

C. mexicana morphologice similes sed minus conidiophorae rami et fructibus breviores sunt stipe augue.

Etymology. Name refers to the country Tunisia, where the fungus was collected.

Conidiophores with a stipe bearing penicillate suites of fertile branches, stipe extensions, and terminal vesicles; stipe septeptate, hyaline, smooth, 42–95 × 7–11 µm; stipe extensions septate, straight to flexuouos, 147–199 µm long, 4–5 µm wide at the apical septum, terminating in a fusiform to broadly ellipsoidal vesicle 8–14 µm diam with papillate apex. **Conidiogenous apparatus** 40–68 µm long, 30–66 µm wide; primary branches aseptate or 1-septate, 17–41 × 5–7 µm; secondary branches aseptate, 10–22 × 4–7 µm; tertiary branches aseptate, 9–18 × 4–5 µm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 8–13 × 3–5 µm; apex with minute periclinal thickening and inconspicuous collarette. **Conidia** cylindrical, rounded at both ends, straight,
Persoonia – Volume 27, 2011

(43–)47–51(–53) × 4–6 µm (av. = 49 × 5 µm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Megaconidia and microconidia not seen.

Culture characteristics — Colonies fast growing at 24 °C on MEA, sienna to bay on surface, and reverse sienna after 7 d; sparse white aerial mycelium with sparse sporulation; chlamydospores extensive throughout the medium.

Notes — Morphologically, C. tunisiana is similar to C. mexicana and C. pseudomexicana, but can be distinguished from both taxa by its shorter stipe extensions. The conidiophores of C. tunisiana (–3) also form fewer fertile branches than C. mexicana (–5) and C. pseudomexicana (–4) (Schoch et al. 1999).

Pathogenicity
All plants inoculated with the Calonectria spp. in this study developed leaf spot, leaf blight or crown and root rot symptoms. The first symptoms of leaf spot and leaf blight were observed 5 d after inoculation on all test plants inoculated with the Calonectria spp., resembling the symptoms observed during the survey. Isolates of C. pseudomexicana (CBS 130354, 130355), C. tunisiana (CBS 130356, 130357) as well as the single isolate of C. mexicana (CBS 130353) produced the most severe symptoms. Isolates of C. polizzi (CBS 130351, 130352) also caused leaf spot and leaf blight on all inoculated plants, but less severe than the other three Calonectria spp. tested. Ten days after inoculation, severe or moderate defoliation of M. communis and M. excelsa cv. Aurea plants was observed. All inoculated plants of M. communis developed crown rot, basal stem rot and root rot 25 d after inoculation with the isolate representing C. polizzi (CBS 130351). All un-inoculated control plants remained healthy and re-isolations from the test plants consistently yielded the test fungi.

DISCUSSION
During a survey of diseased plants at an ornamental nursery in Tunis, Tunisia, a number of Calonectria spp. were isolated from plants exhibiting crown, root rot and leaf spots. DNA sequence and morphological comparisons allowed the identification of two of these isolates as C. mexicana and C. polizzi as well as the description of two new species, C. pseudomexicana and C. tunisiana, both in the C. scoparia complex (Schoch et al. 1999).
Calonectria mexicana resides in the C. scoparia complex (Schoch et al. 1999) and can be distinguished from the other seven Calonectria spp. in the complex based on their unique papillate vesicles (Schoch et al. 1999, Lombard et al. 2010b, C. Chen et al. 2011). Until now, C. mexicana has only been reported from soil samples collected in Mexico, and its pathogenicity was unknown (Schoch et al. 1999, Crous 2002). This study represents the first report of this fungus outside Mexico, and also demonstrates its pathogenicity on some plant hosts.

Calonectria polizzii has previously been reported from ornamental plants collected at a nursery in Sicily, Italy (Schoch et al. 2001, Lombard et al. 2010b), although its pathogenicity was not confirmed. This study represents the first confirmation of the pathogenicity of C. polizzii and widens its distribution to Tunisia. Calonectria polizzii is a member of the C. scoparia complex and can be distinguished from the other members by its smaller macroconidial dimensions (Lombard et al. 2010b).

The description of C. pseudomexicana and C. tunisiana adds two more species to the C. scoparia complex. This complex is characterised by its seven macroconidia and the formation of ellipsoidal to ovoid terminal vesicles on the stipe extensions (Schoch et al. 1999, Crous 2002, Lombard et al. 2010b). Based on phylogenetic inference, both these newly described species are closely related to C. mexicana, which they also resemble in morphology. They can be distinguished from C. mexicana and each other by the number of fertile branches produced on the conidiophores. Calonectria tunisiana (av. = 49 ± 5 µm) has slightly larger macroconidia than both C. mexicana (av. = 45 ± 4 µm; Schoch et al. 1999) and C. pseudomexicana (av. = 45 ± 5 µm).

The pathogenicity tests with isolates of C. mexicana, C. polizzii, C. pseudomexicana and C. tunisiana clearly showed that they are able to cause symptoms similar to those observed during the survey. Calonectria polizzii was less virulent than the other three species, but should still be regarded as an important nursery pathogen. This supports the view that most Calonectria spp. can induce leaf spots if the environmental conditions are favourable (Crous 2002). All four species caused similar disease symptoms on the nine inoculated plant species, suggesting that little is known about the host specificity and mechanisms of infection of this group of plant pathogens.

This study stresses the importance of Calonectria spp. as nursery pathogens. Their soil-borne nature has contributed to their ease of movement globally and little is known about their origins. Furthermore, it is not known if these fungal pathogens originated from Tunisia or were introduced, and more isolates are needed for a study of their population dynamics.

REFERENCES

Crous PW. 2002. Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. APS Press, St. Paul, Minnesota, USA.

