In this issue: Gonadotropin-releasing hormone receptor mRNA is expressed in both cytotrophoblast and syncytiotrophoblast and exhibits changes paralleling the time course of hCG secretion during pregnancy.
(See page 580.)
Alterations in the Hypothalamic Paraventricular Nucleus and Its Oxytocin Neurons (Putative Satiety Cells) in Prader-Willi Syndrome: A Study of Five Cases*

D. F. SWAAB, J. S. PURBA, AND M. A. HOFMAN

Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands

ABSTRACT

Animal experiments have shown that the paraventricular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) inhibit food intake. In the present study, the PVN and its OXT neurons have been investigated in an extreme human eating disorder, i.e., the Prader-Willi syndrome (PWS). PWS patients are characterized by gross obesity, inconstant hunger, hypotonia, hypogonadism, and mental retardation. The PVN of five PWS patients (two males and three females), varying in age between 22–64 yr, and 27 controls (14 males and 13 females) without any primary neurological or psychiatric diseases was morphometrically investigated after conventional staining with thionine and immunocytochemical staining for OXT and vasopressin (AVP). The thionine-stained volume of the PVN was 28% smaller in PWS patients (P = 0.028), and the total cell number was 38% lower (P = 0.009). The immunoreactivity for OXT and AVP was decreased in PWS patients, although the variability within the groups was high. A strong and highly significant decrease (42%; P = 0.016) was found in the number of OXT-expressing neurons of the PWS patients. The volume of the PVN-containing OXT-expressing neurons decreased by 54% (P = 0.028) in PWS. The number of AVP-expressing neurons in the PVN did not change significantly. The OXT neurons of the PVN seem to be good candidates for playing a physiological role in ingestive behavior as “satiety neurons” in the human hypothalamus. (J Clin Endocrinol Metab 80: 573–579, 1995)

ANIMAL experiments have shown that the paraventricular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) are crucial for the regulation of food intake. These OXT neurons project to brain stem nuclei, e.g., the nucleus of the solitary tract and the dorsal motor nucleus of the nervus vagus (1–4). Small lesions in the PVN produce overeating and obesity (5), and stimulation of the medial paraventricular subdivision of the PVN elicits significant increases in gastric acid secretion (6). Central administration of OXT or OXT agonists inhibits food intake and gastric motility, whereas these effects are prevented by OXT receptor antagonists (6–9). The OXT neurons of the PVN thus seem to have an inhibitory effect on eating and body weight. The present study deals with the question of whether a disorder of the PVN, in particular of its putative satiety neurons (the OXT neurons), may be the basis of the inconstant hunger and obesity in the most common type of human genetic obesity, i.e., the Prader-(Labhart)Willi syndrome (PWS) (10). Apart from gross obesity and problems during the birth process (11), this syndrome is characterized by diminished fetal motor activity, severe infant hypotonia, mental retardation, hypogonadism, and hypogonadism (12). The last two features are of particular interest for our study, because OXT neurons are also thought to be crucial in various aspects of sexual behavior, i.e., sexual arousal, orgasm, sexual satiety, and other aspects of sociosexual interactions (13–17).

The present study reveals a decrease in the size of the PVN and a strong and highly significant decrease in the number of OXT-expressing neurons in the PVN of PWS patients. OXT neurons in the human PVN are, therefore, good candidates for playing a physiological role in ingestive behavior as “satiety neurons.”

Materials and Methods

The following five PWS cases were studied.

Case 1: 44282 (Johns Hopkins Hospital, Baltimore, MD)

The patient was a 28-yr-old male with a history of morbid obesity, hyperphagia, hypogonadism, and mental retardation. To control his weight, he underwent a gastric stapling procedure and gastrostomy. He was admitted to hospital for the evaluation of a personality disorder characterized by immature demanding and manipulative behavior, including self-mutilation. His IQ at that time was 77. Some days before his death a noncontrast computed tomographic scan revealed hydrocephalus without focal lesions, ventricular calcifications, and slight prominence of the sulcal pattern. Despite aggressive management, the patient died of septic shock in dehydrated condition. There were no specific neuropathological features.

Case 2: 43930 (Massachusetts General Hospital, Boston, MA)

The patient was a 30-yr-old woman who was the first child of a full-term gestation, weighing 3260 g at birth. In retrospect, the mother felt that the fetus had not been as active as her siblings in utero. The first couple of months she was very hypotonic and could not suck the breast or bottle effectively, so she was drip-fed. In adulthood, she suffered from massive obesity, gonadotropin deficiency [LH, 1.6 IU/L (normal, 3–120 IU/L depending on the stage of the menstrual cycle); FSH, 0.5 IU/L (normal, 2–30 IU/L)], strabism, short distal extremities, and mental retardation (full scale IQ, 87; verbal IQ, 97; performance IQ, 76). Before her death she was frequently operated on because of her obesity, and she

Received June 20, 1994. Revision received September 29, 1994. Accepted October 18, 1994.

Address requests for reprints to: Dr. D. F. Swaab, Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.

*This work was supported by the Deventer-Maastricht Foundation.
died of renal failure and generalized sepsis after one of these operations. The general pathology showed ovarian atrophy, with markedly underdeveloped secondary sexual characteristics. At autopsy, her length was 155 cm, and her weight was 125.5 kg. There were no special neuropathological features.

Case 3: 91–252 (Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands)

The patient was a 33-yr-old woman. In the few years after she had been diagnosed as a Prader-Willi patient, she was frequently admitted to various hospitals for congestive heart failure as a complication of her obesity. She died of pneumonia. At autopsy, she had severe dysmorphisms: a length of 153 cm, an approximate weight of 160 kg, with enormous fat accumulations in the abdomen and upper legs, narrow bifrontal diameter, hypopigmentation (hair, eyes, and skin), pectus excavatus, short extremities, atrioventricular, and hydrosalpinx of the left tube.

Case 4: 93–056 (Cambridge Brain Bank Laboratory, Cambridge, United Kingdom)

The patient was a 38-yr-old male with a history of hypotonia, obesity, small hands and feet, hypogonadism, an excessive sleeping pattern, and mental retardation. At the age of 3 yr, he was investigated for gross obesity (50% above average). No specific endocrine causes were found. From the age of 9–11 yr, he received anabolic steroids to boost growth and development. At the age of 15 yr, he underwent a bilateral orchiopexy and an IQ test (verbal score, 79; performance score, 70). His behavior became more and more problematic; he was caught stealing and, therefore, lost his job in an engineering firm. At that time, hospital assessment diagnosed a small, chubby, sexually underdeveloped man with stubborn, demanding, manipulative, and self-opinionated behavior. Some years later he was operated on for recurrent inguinal hernia. The patient was finally described as a diabetic mellitus. Karyotyping did not provide any evidence of a deletion on chromosome 15.

Case 5: 317–90 (Christian Mental Retardation Institute Hooge Burch, Zaanmerdam, The Netherlands)

The patient was a 64-yr-old woman. From childhood she had been slow and inactive, with fits of anger. At the age of 34 yr, she was referred to a psychiatric clinic because of her behavioral problems. From the age of 40 yr, she was given low doses of neuroleptics. She had periods of somnolence, which became more pronounced with age. She had many dysmorphisms: obesity (length, 165 cm; weight, 84 kg), small hands and feet, narrow bifrontal diameter, ptosis on the left side, scoliosis, and rotatory nystagmus. She was mentally retarded and had primary amenorrhea. She died of respiratory insufficiency. General pathology revealed a small uterus and small ovaries with a smooth surface (estrogen insufficiency).

The 5 PWS cases were compared to 5 age- and sex-matched controls that did not have any primary neurological or psychiatric diseases (see Table 1). In addition, the 5 PWS cases were compared to the entire group of 26 adult controls, i.e., 14 men and 12 females, whose OXT and arginine vasopressin (AVP) neurons had been determined by the same investigator (J.S.P.).

General pathology and neuropathology of the controls were performed at either the Free University in Amsterdam (W. Kamphors) or the Academic Medical Center of the University of Amsterdam (D. Troost). The neuropathology of PWS patients was studied in several other places. The brains, obtained by autopsy after the necessary approval, were weighed and fixed in 4% formaldehyde and generally kept at room temperature for at least 1 month. Details on the age, postmortem delay, fixation time, and clinical diagnosis of the subjects are given in Table 1. The hypotalamic area, containing the PVN, was dissected, dehydrated in graded ethanol, and embedded in paraffin.
Histology

Serial 6-μm frontal sections were cut on a Leitz microtome (Leitz, Rockleigh, IL) and mounted on chrome-alum-coated object slides. Every 50th section was stained with thionine to locate the PVN before immunocytochemical staining.

Immunocytochemistry

Every 50th section was mounted on a chrome-alum-coated object slide, deparaffinized, hydrated, and stained with thionine (0.1% thionine in acetate buffer, pH 4).

Two series of sections taken at regular 300-μm intervals throughout the region in which the PVN could be discerned in the thionine-stained material were stained immunocytochemically for AVP and OXT, respectively.

To remove cross-reactivity from the AVP (Truus, 18–9–85) and OXT antisera (O-1-V, 4–4–75), the antisera were preabsorbed twice with OXT- or OVP-glutaraldehyde-coupled Sepharose beads, respectively (18). The second incubation resulted in a complete removal of the cross-reactivity in the assay. In addition, cross-reactivity was checked in alternating 6-μm sections of the PVN and revealed no cells staining with either antisera (19). Mounted sections were hydrated and stained according to the following procedure: 1) incubation with purified AVP antiserum (1:300) or purified OXT antiserum (1:250) in 0.05 mol/L Tris containing 0.9% NaCl (TBS; pH 7.6) with 0.5% Triton X-100 (all incubations were performed at room temperature for 1 h and subsequently overnight at 4°C in plastic boxes to prevent evaporation); 2) washing in TBS (twice, 10 min each time); 3) incubation with goat antirabbit immunoglobulin G serum (Betsie; 1:100) in TBS at room temperature for 30 min; 4) washing in TBS (twice, 10 min each time); 5) incubation with peroxidase-antiperoxidase (1:500) in TBS at room temperature for 30 min; 6) washing in TBS (twice, 10 min each time); 7) rinsing in 0.05 mol/L Tris-HCl (pH 7.6); 8) incubation with 0.5 mg/mL 3,3′-diaminobenzidine (Sigma Chemical Co., St. Louis, MO) in 0.05 mol/L Tris-HCl containing 0.01% H2O2 at room temperature for 10 min; 9) rinsing in Aquadest, followed by dehydration in graded ethanol at room temperature; and 10) cover-slippling the sections with Entellan.

Morphometry

Cross-sectional areas of the PVN in thionine-, AVP-, and OXT-stained sections were measured with a Calcomp 2000 digitizer connected to an HP 9000/385 computer and with a Zeiss microscope (Zeiss, New York, NY) with PLAN 2.5x objective and PLAN 12.5x oculars. If the cross-sectional area of the PVN extended beyond the field of vision in a particular section, this area was measured stepwise using a quadrangular grid in one of the oculars as a reference. All sections containing three or more stained PVN neurons were included in the measurements. The PVN was measured at the right side of the brain, except when the nucleus was not completely present within the dissected tissue from that side.

The volume of the thionine, AVP, and OXT cell populations in the PVN was determined by integrating area measurements from the most rostral to the most caudal sections of each population (20).

Numerical total cell density (including neurons, glia, and endothelial cells) was estimated by counting all nuclear profiles per unit area, and AVP and OXT cell densities in the PVN were estimated by counting the total number of nuclear profiles of immunoreactive (IR) neurons per U area. These procedures were followed by a discrete unfolding procedure (21) with the modification proposed by Cruz-Orive (22) and a correction for section thickness (6 μm). For this purpose, nuclear profile areas were measured with the equipment described above, but with a PLAN ×40 objective. To take local fluctuations in cell density into account, AVP and OXT cell nuclei in the PVN were sampled in a random systematic way (23) by measuring all nuclear profiles in every 200th section throughout the PVN (i.e. at 1200-μm intervals), respectively every 300th section (i.e. at 1800 μm), for total cell number in the thionine preparation. This method is independent of tissue shrinkage.

The total number of AVP, OXT neurons, and the total cell number (including neurons, glia, and endothelial cells) in the PVN were computed by multiplying the average numerical cell density with the volume of the population in question.

Statistics

Differences among the groups were tested in a two-tailed manner, using the Mann-Whitney U test statistics. Throughout this study, values were expressed as the mean ± SEM. The critical level for statistical significance was taken to be 5%.

Results

Histology

In thionine-stained sections, no gross qualitative difference was found between the PVN of PWS cases and controls (Fig. 1, A and B). After the five PWS cases had been matched with the five controls according to age and sex (Table 1), the PVN was quantitatively studied in thionine preparations (Table 2). The volume of the PVN in PWS patients appeared to be decreased by 28% (P = 0.028). This was not so much due to a decreased rostro-caudal axis (9%), but, rather, to the decreased size of the maximal area of the PVN (28%; Table

![Fig. 1. In thionine-stained sections of the PVN, no qualitative differences were observed between controls (no. 81255; A) and PWS patients (no. 43830; B). The staining of OXT (C and D) and AVP (E and F) was generally lower in PWS patients (no. 43830; D and F) than in controls (no. 81255; C and E). G and H, Two PWS patients (no. 1 and 4) had intense and weak OXT staining (no. 93056; G) and only negligible AVP staining (no. 93056; H) in the PVN. The bar represents 50 μm.](image-url)
TABLE 2. FV in thionine staining

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Vol (mm³)</th>
<th>Length (mm)</th>
<th>Maximal area (mm²)</th>
<th>Cell density (mm³ × 10⁶)</th>
<th>Total cell no. (×10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.232</td>
<td>1.20</td>
<td>1.395</td>
<td>203.5</td>
<td>253</td>
</tr>
<tr>
<td>2</td>
<td>2.974</td>
<td>3.59</td>
<td>1.329</td>
<td>179.2</td>
<td>533</td>
</tr>
<tr>
<td>3</td>
<td>3.613</td>
<td>5.16</td>
<td>1.066</td>
<td>200.2</td>
<td>723</td>
</tr>
<tr>
<td>4</td>
<td>4.071</td>
<td>5.99</td>
<td>0.866</td>
<td>190.4</td>
<td>775</td>
</tr>
<tr>
<td>5</td>
<td>3.757</td>
<td>2.40</td>
<td>2.238</td>
<td>196.1</td>
<td>736</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>3.13 ± 0.51a</td>
<td>3.67 ± 0.88</td>
<td>1.379 ± 0.235</td>
<td>193.9 ± 4.3</td>
<td>604 ± 97.35b</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.403</td>
<td>4.16</td>
<td>1.347</td>
<td>241.6</td>
<td>1064</td>
</tr>
<tr>
<td>2</td>
<td>4.546</td>
<td>3.60</td>
<td>2.372</td>
<td>245.6</td>
<td>1117</td>
</tr>
<tr>
<td>3</td>
<td>5.035</td>
<td>4.79</td>
<td>1.695</td>
<td>206.0</td>
<td>1037</td>
</tr>
<tr>
<td>4</td>
<td>3.985</td>
<td>4.14</td>
<td>1.726</td>
<td>196.3</td>
<td>782</td>
</tr>
<tr>
<td>5</td>
<td>3.822</td>
<td>3.48</td>
<td>2.392</td>
<td>225.3</td>
<td>861</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>4.36 ± 0.21a</td>
<td>4.03 ± 0.23</td>
<td>1.906 ± 0.205</td>
<td>223.0 ± 9.7</td>
<td>972 ± 64.12b</td>
</tr>
</tbody>
</table>

Female; m, male.
aP = 0.028.
bP = 0.009.

2. Total cell density was 13% lower in PWS. The total cell numbers, including neurons, glia, and endothelial cells, showed a strong decrease of 38% in PWS (Table 2).

Immunocytochemistry

The staining intensity of OXT and AVP neurons was generally lower in the PWS group than in the controls (Fig. 1, C–F), although the variability in the PWS group was large. There was no obvious relationship between the immunoreactivity and OXT- or AVP-IR neuron numbers. In PWS patients 1 and 4, good OXT staining, but very weak AVP staining was obtained (Fig. 1, G and H), but these patients did not influence the mean AVP cell number (cases 2, 3, and 5; mean AVP immunoreactivity, 1888 ± 1505) or our conclusions. It should be noted that the vasopressin neurons of these two patients did not show good staining with an anticyclopeptide antibody (23a).

When the data of the five PWS cases were compared with those from the five age- and sex-matched controls (Table 3), OXT neuron number (42%) and volume (54%) were significantly and strongly decreased in PWS. Concerning the AVP neurons, only the size of the nucleus was increased. When the five PWS cases were compared with all 27 controls, the number of OXT neurons was clearly lower than that of the controls (Fig. 2). The AVP cell numbers of the PWS cases followed the same course as the controls and were not significantly different (Fig. 2).

No significant difference was found for brain weight, postmortem tissue, or fixation time (see Table 1) when the five PWS cases were compared to the five sex- and age-matched controls. The OXT and AVP neuronal counts of the one PWS patient with a long fixation time (case 4) were not lower than those in the others, which shows that formalin fixation of more than 1 yr did not affect the results.

Discussion

The main finding of the present paper is the 28% reduction in volume and the 41% reduction in total cell number of the thionine-stained PVN in PWS and the strong reduction (42%) in the number of OXT neurons in the PVN of PWS patients. Comparison with the group of 26 controls did not give any indication that antomyelinating factors had influenced these results. In earlier studies, the number of OXT neurons was found to remain stable during the course of aging and in Alzheimer’s disease (19). The stability in aging was confirmed in the present paper. Previously, a decrease in OXT-expressing cell numbers had only been observed in two disorders, i.e. Parkinson’s disease (22% reduction) and autoimmune-infection syndrome (40% reduction) (24, 25), both conditions in which typical PWS eating disorder symptoms, such as gross obesity and inattentive hunger, are not present. However, there is indeed an important difference between the present results in PWS and the findings in Par-

TABLE 3. Neuron number, mean diameter of cell nuclei, and volume of the population of OXT- and AVP-containing cells in the human PVN

<table>
<thead>
<tr>
<th>Group</th>
<th>Neuron no. (×10⁶)</th>
<th>Cell nuclear diameter (μm)</th>
<th>Vol (mm³)</th>
<th>Neuron no. (×10⁶)</th>
<th>Cell nuclear diameter (μm)</th>
<th>Vol (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched controls (n = 5)</td>
<td>26.14 ± 2.09</td>
<td>8.69 ± 0.36</td>
<td>3.58 ± 0.54</td>
<td>18.23 ± 1.83</td>
<td>8.77 ± 0.53</td>
<td>1.62 ± 0.11</td>
</tr>
<tr>
<td>WS (n = 5)</td>
<td>15.25 ± 2.09</td>
<td>9.48 ± 0.28</td>
<td>1.64 ± 0.19</td>
<td>17.18 ± 1.895</td>
<td>10.19 ± 0.16</td>
<td>1.60 ± 0.25</td>
</tr>
<tr>
<td>Statistics (P)</td>
<td>0.016</td>
<td>0.172</td>
<td>0.028</td>
<td>0.465</td>
<td>0.016</td>
<td>0.754</td>
</tr>
</tbody>
</table>

Values are given as the mean ± SEM.

* Differences among the groups were tested in a two-tailed manner, using the Mann-Whitney U test.
kinson’s disease and AIDS. In the latter two conditions, the volume of the PVN containing OXT and AVP neurons does not alter, whereas in PWS, the volume of the OXT part of the PVN declines by 54%. As the OXT and AVP cell populations only occupy some 50% of the entire PVN volume (19, 26, 27), the PVN volume of the five PWS cases was compared to that of the five matched controls. Indeed, a 28% reduction was found in PWS patients, which shows that the PVN is anatomically affected in this syndrome.

Whether the neuronal reduction in PWS is restricted to the OXT neurons of the PVN, of course, remains to be seen. The unaltered AVP cell numbers in the PVN suggest, however, that this phenomenon is quite specific. With respect to the local specificity, it is of interest that Kremer (28) determined the number of neurons in the hypothalamic lateral tuberal nucleus of one PWS patient (no. 43830) and did not find a difference from controls. This nucleus is also considered to be involved in the regulation of feeding and metabolism (28).

After its release into the bloodstream in the neurohypophysis, OXT acts on peripheral organs as a neurohormone (for review, see Ref. 29), whereas OXT acts as a neurotransmitter or neuromodulator after its transport by nerve fibers and release from synapses in various brain areas (1–4). The lack of peripheral and central OXT effects due to the lower number of OXT neurons in the PVN of PWS patients may thus, in principle, both contribute to the symptomatology of this syndrome.

The gross obesity, due to insatiable hunger, which is so characteristic for PWS, may primarily be related to the observed decrease in OXT neurons in the PVN. It has been shown in animal experiments that OXT neurons projecting from the PVN to brain stem nuclei, such as the NTS and dorsal motor nucleus of the nervus vagus, are satiety neurons (see introduction). In addition to its central effects, the peripheral effects of OXT as a neurohormone may be presumed to be relevant to PWS. OXT acts on peripheral tissues as an insulin-like hormone. This neuropeptide stimulates glucose oxidation and lipogenesis and inhibits the lipogenic effects of catecholamines (30). However, in a study on six PWS pa-
on the human PVN is that it is not possible to determine with certainty if the neurons that do not express OXT in PWS indeed project to the brain or, rather, are of a neuroendocrine nature and project to the neurohypophysis. In the first place, the OXT cells cannot be subdivided, as in the rat, into magnocellular elements projecting to the neurohypophysis or parvocellular elements projecting to the brain stem (39), because there is a continuous distribution from small to large OXT neurons in the PVN. Moreover, in contrast to the rat, in the human PVN, neither type of OXT neurons is localized in a particular subnucleus of the PVN. This is also the case with AVP and CRH neurons (27, 40). The absence of an arrangement of the PVN into subnuclei is not restricted to humans. It has also been observed in the cow, cat, and guinea pig (41). Thus, the most direct way of establishing whether the centrally projecting OXT neurons are indeed affected seems to be to study the OXT innervation of the brain stem nuclei in PWS and controls.

So far in the literature, no histological changes have been reported in the six PWS patients whose hypothalami were investigated postmortem along the lines of conventional neuropathology (33, 42–45). In an earlier study, we found no expression of the neuroendocrine gene product 7B2 in the supraoptic nucleus or PVN of two of the five PWS patients we examined (23a). It turned out that the brains of the same two PWS patients that lacked 7B2 expression (cases 1 and 4) hardly stained with antivasopressin, although all five PWS cases stained well with an antibody against the precursor of AVP (23a), which indicates a defect in the processing of this neuropeptide precursor.

The present paper revealed that the number of AVP neurons is normal, but the number of OXT neurons in the five PWS patients is low. This illustrates that by applying immunocytochemistry and morphometry, defects in hypothalamic nuclei may be detected that would remain unnoticed if conventional neuropathological means were used. Such techniques should now be applied to other nuclei and neuropeptide systems in PWS to obtain a better knowledge of the background of the mainly neuroendocrine symptomatology of this syndrome.

An interesting question in relation to the dual projection of OXT neurons, i.e., to the neurohypophysis and into the brain, is whether the strong reduction in OXT neurons found in PWS is also reflected by reduced OXT levels in peripheral blood. If so, it might be worthwhile to investigate whether OXT administration by nasal spray, a procedure that has been shown to elicit central effects in humans (46), inhibits or prevents the eating attacks of PWS patients.

Acknowledgments

We are indebted to Prof. C. B. Saper (44282), Dr. R. S. Williams (43830), Dr. M. E. J. Schipper (91–252), Dr. J. Xuereb (93–056), Dr. H. M. Evenhuis, and Dr. R. A. C. Roos (317–90) for their help in providing us with documented brain material of PWS patients. The control brain material was obtained from the Netherlands Brain Bank (coordinator: Dr. R. Ravid). We would also like to thank Mr. B. Fisser and Ms. A. A. Sluiter for their technical assistance, Mr. G. van der Meulen for his photographic work, and Ms. O. Pach for her secretarial support.

References


