University of Copenhagen - Microbiome Assisted Triticum Resilience In X-dimensions

Projectdetails

Beschrijving

A major challenge for humankind is to feed the increasing human population in a sustainable manner. According to UN’s development programme extreme hunger and malnutrition is a major barrier to development in many countries: 795 million people are estimated to be chronically undernourished as of 2014, often as a direct consequence of environmental degradation, drought and loss of biodiversity. The Sustainable Development Goals (SDGs) aim to end hunger and malnutrition by 2030. Improved agricultural productivity is a critical part of achieving the SDG goal 2, Zero Hunger.
Currently more than one third of crop yields are lost due to abiotic and biotic stress factors, such as drought, salinity, pests and disease. To minimize this yield gap and to simultaneously reduce the environmental impact of current agricultural practices, future crop production needs to be achieved on sub-optimal soils with reduced input of fertilizers and pesticides (“more with less”). These challenges have increased the awareness of the importance of the plant microbiome for improved agricultural practices. Plants are colonized by an
astounding number of microorganisms that can have profound effects on seed germination, seedling vigour, plant growth and development, nutrition, diseases and productivity. Thus, the plants can be viewed as holobionts that benefits from its microbiome in terms of specific functions and traits. In return, plants
transfer a substantial part of their photosynthetically fixed carbon directly into symbionts and into their immediate surroundings (spermosphere, rhizosphere, phyllosphere) thereby supporting the microbial community and influencing its composition and activities. For the vast majority of plant-associated
microorganisms, however, there is little knowledge of their specific impact on crop growth and crop resilience and the mechanisms underlying microbiome-plant interactions. Hence, a critical step in developing new microbiome-assisted approaches to quantitatively and predictably improve crop resilience management strategies is deciphering the hyperdiverse plant microbiome. In particular, we need to identify key microorganisms and mechanisms involved in plant growth promotion and protection against biotic and abiotic stresses. To that end, systems-based analyses combined with deep-learning and modelling are essential to decode the taxonomic diversity and functional potential of plant microbiomes.
Korte titelThe MATRIX
StatusActief
Effectieve start/einddatum01/01/202031/12/2025

Vingerafdruk

Verken de onderzoeksgebieden die bij dit project aan de orde zijn gekomen. Deze labels worden gegenereerd op basis van de onderliggende prijzen/beurzen. Samen vormen ze een unieke vingerafdruk.