TY - JOUR
T1 - A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa
AU - Kurm, Viola
AU - Geisen, Stefan
AU - Hol, Wilhelmina H. Gera
N1 - 6714, TE;
PY - 2019/2
Y1 - 2019/2
N2 - In many studies, rare bacterial taxa have been found to increase in response to environmental changes. These changes have been proposed to contribute to the insurance of ecosystem functions. However, it has not been systematically tested if rare taxa are more likely to increase in abundance than dominant taxa. Here, we study whether rare soil bacterial taxa are more likely to respond to environmental disturbances and if rare taxa are more opportunistic than dominant taxa. To test this, we applied nine different disturbance treatments to a grassland soil and observed changes in bacterial community composition over 7 days. While 12% of the dominant taxa changed in abundance, only 1% of the rare taxa showed any effect. Rare taxa increased in response to a single disturbance treatment only, while dominant taxa responded to up to five treatments. We conclude that rare taxa are not more likely to contribute to community dynamics after disturbances than dominant taxa. Nevertheless, as rare taxa outnumber abundant taxa with here 230 taxa that changed significantly, the chance is high that some of these rare taxa might act as ecologically important keystone taxa. Therefore, rare and abundant taxa might both contribute to ecosystem insurance.
AB - In many studies, rare bacterial taxa have been found to increase in response to environmental changes. These changes have been proposed to contribute to the insurance of ecosystem functions. However, it has not been systematically tested if rare taxa are more likely to increase in abundance than dominant taxa. Here, we study whether rare soil bacterial taxa are more likely to respond to environmental disturbances and if rare taxa are more opportunistic than dominant taxa. To test this, we applied nine different disturbance treatments to a grassland soil and observed changes in bacterial community composition over 7 days. While 12% of the dominant taxa changed in abundance, only 1% of the rare taxa showed any effect. Rare taxa increased in response to a single disturbance treatment only, while dominant taxa responded to up to five treatments. We conclude that rare taxa are not more likely to contribute to community dynamics after disturbances than dominant taxa. Nevertheless, as rare taxa outnumber abundant taxa with here 230 taxa that changed significantly, the chance is high that some of these rare taxa might act as ecologically important keystone taxa. Therefore, rare and abundant taxa might both contribute to ecosystem insurance.
KW - NIOO
U2 - 10.1111/1462-2920.14492
DO - 10.1111/1462-2920.14492
M3 - Article
SN - 1462-2912
VL - 21
SP - 750
EP - 758
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 2
ER -