A Robot’s Street Credibility: Modeling authenticity judgments for artificially generated Hip-Hop lyrics

Enrique Manjavacas, Mike Kestemont, F.B. Karsdorp

Onderzoeksoutput: Hoofdstuk in boek/boekdeelBijdrage aan conferentie proceedingsWetenschappelijkpeer review

Samenvatting

This study aims to advance and enhance our understanding of the properties that contribute to the perceived authenticity of a specific art form: Hip-Hop lyrics. The basis of our study is an experiment carried out in the context of a large, mainstream contemporary music festival. We crowdsourced a large dataset of authenticity judgements for both authentic and neurally generated Hip-Hop lyrics, which enable us to quantitatively assess human biases toward artificially generated text as well as which linguistic characteristics are perceived as authenticity cues. Additionally, the dataset provides solid ground for evaluating different neural language generation systems with respect to their perceived credibility. We compare a variety of language models and techniques. Our experiments contribute equally to improving the credibility of generated text and enhancing our understanding of the cognitive processes at play in the perception of authentic and artificial art.
Originele taal-2Engels
TitelProceedings of the 2019 Digital Humanities conference
StatusGepubliceerd - 2019

Vingerafdruk

Duik in de onderzoeksthema's van 'A Robot’s Street Credibility: Modeling authenticity judgments for artificially generated Hip-Hop lyrics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit