Computational model links normalization to chemoarchitecture in the human visual system

Onderzoeksoutput: Bijdrage aan wetenschappelijk tijdschrift/periodieke uitgaveArtikelWetenschappelijkpeer review

37 Downloads (Pure)


A goal of cognitive neuroscience is to provide computational accounts of brain function. Canonical computations-mathematical operations used by the brain in many contexts-fulfill broad information-processing needs by varying their algorithmic parameters. A key question concerns the identification of biological substrates for these computations and their algorithms. Chemoarchitecture-the spatial distribution of neurotransmitter receptor densities-shapes brain function. Here, we propose that local variations in specific receptor densities implement algorithmic modulations of canonical computations. To test this hypothesis, we combine mathematical modeling of brain responses with chemoarchitecture data. We compare parameters of divisive normalization obtained from 7-tesla functional magnetic resonance imaging with receptor density maps obtained from positron emission tomography. We find evidence that serotonin and γ-aminobutyric acid receptor densities are the biological substrate for algorithmic modulations of divisive normalization in the human visual system. Our model links computational and biological levels of vision, explaining how canonical computations allow the brain to fulfill broad information-processing needs.

Originele taal-2Engels
Pagina's (van-tot)eadj6102
TijdschriftScience advances
Nummer van het tijdschrift1
StatusGepubliceerd - 05 jan. 2024


Duik in de onderzoeksthema's van 'Computational model links normalization to chemoarchitecture in the human visual system'. Samen vormen ze een unieke vingerafdruk.

Citeer dit