Divisive normalization unifies disparate response signatures throughout the human visual hierarchy

Onderzoeksoutput: Bijdrage aan wetenschappelijk tijdschrift/periodieke uitgaveArtikelWetenschappelijkpeer review

16 Citaten (Scopus)
41 Downloads (Pure)


Neural processing is hypothesized to apply the same mathematical operations in a variety of contexts, implementing so-called canonical neural computations. Divisive normalization (DN) is considered a prime candidate for a canonical computation. Here, we propose a population receptive field (pRF) model based on DN and evaluate it using ultra-high-field functional MRI (fMRI). The DN model parsimoniously captures seemingly disparate response signatures with a single computation, superseding existing pRF models in both performance and biological plausibility. We observe systematic variations in specific DN model parameters across the visual hierarchy and show how they relate to differences in response modulation and visuospatial information integration. The DN model delivers a unifying framework for visuospatial responses throughout the human visual hierarchy and provides insights into its underlying information-encoding computations. These findings extend the role of DN as a canonical computation to neuronal populations throughout the human visual hierarchy.

Originele taal-2Engels
TijdschriftProceedings of the National Academy of Sciences of the United States of America
Nummer van het tijdschrift46
StatusGepubliceerd - 16 nov. 2021


Duik in de onderzoeksthema's van 'Divisive normalization unifies disparate response signatures throughout the human visual hierarchy'. Samen vormen ze een unieke vingerafdruk.

Citeer dit