TY - JOUR
T1 - Effect of organic amendments obtained from different pretreatment technologies on soil microbial community
AU - Luo, Yujia
AU - Chavez-Rico, Vania Scarlet
AU - Sechi, Valentina
AU - Bezemer, T. Martijn
AU - Buisman, Cees J.N.
AU - ter Heijne, Annemiek
N1 - Data archiving: on request
PY - 2023/9/1
Y1 - 2023/9/1
N2 - The application of organic amendments (OAs) obtained from biological treatment technologies is a common agricultural practice to increase soil functionality and fertility. OAs and their respective pretreatment processes have been extensively studied. However, comparing the properties of OAs obtained from different pretreatment processes remains challenging. In most cases, the organic residues used to produce OAs exhibit intrinsic variability and differ in origin and composition. In addition, few studies have focused on comparing OAs from different pretreatment processes in the soil microbiome, and the extent to which OAs affect the soil microbial community remains unclear. This limits the design and implementation of effective pretreatments aimed at reusing organic residues and facilitating sustainable agricultural practices. In this study, we used the same model residues to produce OAs to enable meaningful comparisons among compost, digestate, and ferment. These three OAs contained different microbial communities. Compost had higher bacterial but lower fungal alpha diversity than ferment and digestate. Compost-associated microbes were more prevalent in the soil than ferment- and digestate-associated microbes. More than 80% of the bacterial ASVs and fungal OTUs from the compost were detected 3 months after incorporation into the soil. However, the addition of compost had less influence on the resulting soil microbial biomass and community composition than the addition of ferment or digestate. Specific native soil microbes, members from Chloroflexi, Acidobacteria, and Mortierellomycota, were absent after ferment and digestate application. The addition of OAs increased the soil pH, particularly in the compost-amended soil, whereas the addition of digestate enhanced the concentrations of dissolved organic carbon (DOC) and available nutrients (such as ammonium and potassium). These physicochemical variables were key factors that influenced soil microbial communities. This study furthers our understanding of the effective recycling of organic resources for the development of sustainable soils.
AB - The application of organic amendments (OAs) obtained from biological treatment technologies is a common agricultural practice to increase soil functionality and fertility. OAs and their respective pretreatment processes have been extensively studied. However, comparing the properties of OAs obtained from different pretreatment processes remains challenging. In most cases, the organic residues used to produce OAs exhibit intrinsic variability and differ in origin and composition. In addition, few studies have focused on comparing OAs from different pretreatment processes in the soil microbiome, and the extent to which OAs affect the soil microbial community remains unclear. This limits the design and implementation of effective pretreatments aimed at reusing organic residues and facilitating sustainable agricultural practices. In this study, we used the same model residues to produce OAs to enable meaningful comparisons among compost, digestate, and ferment. These three OAs contained different microbial communities. Compost had higher bacterial but lower fungal alpha diversity than ferment and digestate. Compost-associated microbes were more prevalent in the soil than ferment- and digestate-associated microbes. More than 80% of the bacterial ASVs and fungal OTUs from the compost were detected 3 months after incorporation into the soil. However, the addition of compost had less influence on the resulting soil microbial biomass and community composition than the addition of ferment or digestate. Specific native soil microbes, members from Chloroflexi, Acidobacteria, and Mortierellomycota, were absent after ferment and digestate application. The addition of OAs increased the soil pH, particularly in the compost-amended soil, whereas the addition of digestate enhanced the concentrations of dissolved organic carbon (DOC) and available nutrients (such as ammonium and potassium). These physicochemical variables were key factors that influenced soil microbial communities. This study furthers our understanding of the effective recycling of organic resources for the development of sustainable soils.
KW - Compost
KW - Digestate
KW - Ferment
KW - Pretreatment technologies
KW - Soil amendments
KW - Soil microbial community
U2 - 10.1016/j.envres.2023.116346
DO - 10.1016/j.envres.2023.116346
M3 - Article
C2 - 37295594
AN - SCOPUS:85162041651
SN - 0013-9351
VL - 232
JO - Environmental Research
JF - Environmental Research
M1 - 116346
ER -