Projecten per jaar
Samenvatting
One way to support data management planning for FAIR data is to incorporate FAIR criteria more explicitly in data management plan (DMP) templates. As DMPs hold an important position in the planning phase of a research project, the inclusion of FAIR data criteria at this stage will facilitate a greater understanding of the necessary steps needed to make data FAIR as well as an increase in the number of FAIR datasets produced as a result. In this output of the FAIRsFAIR project, FAIR explicit guidance has been added to the Science Europe DMP evaluation rubric to help researchers and data stewards better plan for FAIR data. This guidance is based on FAIR-Aware, the FAIR learning tool developed in the FAIRsFAIR project.
FAIR-Aware: https://fairaware.dans.knaw.nl/
NB: This guidance document does not replace the original Science Europe guidance (https://doi.org/10.5281/zenodo.4915862). The original document will always take precedence.
FAIR-Aware: https://fairaware.dans.knaw.nl/
NB: This guidance document does not replace the original Science Europe guidance (https://doi.org/10.5281/zenodo.4915862). The original document will always take precedence.
Originele taal-2 | Engels |
---|---|
Mijlpalentype toekennen | Lesson |
Uitgever | Zenodo |
Aantal pagina's | 11 |
DOI's | |
Status | Gepubliceerd - 22 feb. 2022 |
Vingerafdruk
Duik in de onderzoeksthema's van 'FAIR-Aware Additional guidance to the Science Europe DMP assessment rubric'. Samen vormen ze een unieke vingerafdruk.Projecten
- 1 Afgelopen
-
FAIRsFAIR
Dillo, I., Grootveld, M. J., von Stein, I., de Vries, J., Coen, G., Leenarts, E., Mokrane, M., van Horik, R., Kalaitzi, V. & Saldner, S.
01/03/2019 → 28/02/2022
Project: Onderzoek