High-frequency microdomain Ca2+ transients and waves during early myelin internode remodeling.

A. Battefeld, M. Popovic, Sharon I de Vries, M.H.P. Kole

Onderzoeksoutput: Bijdrage aan wetenschappelijk tijdschrift/periodieke uitgaveArtikelWetenschappelijkpeer review

33 Citaten (Scopus)
229 Downloads (Pure)


Ensheathment of axons by myelin is a highly complex and multi-cellular process. Cytosolic calcium (Ca2+) changes in the myelin sheath have been
implicated in myelin synthesis, but the source of this Ca2+ and the role of neuronal activity is not well understood. Using one-photon Ca2+ imaging,
we investigated myelin sheath formation in the mouse somatosensory cortex and found a high rate of spontaneous microdomain Ca2+ transients
and large-amplitude Ca2+ waves propagating along the internode. The frequency of Ca2+ transients and waves rapidly declines with maturation and reactivates during remyelination. Unexpectedly, myelin microdomain Ca2+ transients occur independent of neuronal action potential generation or network activity but are nearly completely abolished when the mitochondrial permeability transition pores are blocked. These findings are supported by the discovery
of mitochondria organelles in non-compacted myelin. Together, the results suggest that myelin microdomain Ca2+ signals are cell-autonomously
driven by high activity of mitochondria during myelin remodeling.
Originele taal-2Engels
Pagina's (van-tot)182-191
TijdschriftCell Reports
StatusGepubliceerd - 05 jan. 2019


Duik in de onderzoeksthema's van 'High-frequency microdomain Ca2+ transients and waves during early myelin internode remodeling.'. Samen vormen ze een unieke vingerafdruk.

Citeer dit