TY - JOUR
T1 - Impaired caudal fin-fold regeneration in zebrafish deficient for the tumor suppressor Pten
AU - Hale, Alexander James
AU - Kiai, Ali
AU - Sikkens, Jelte
AU - den Hertog, Jeroen
PY - 2017/8
Y1 - 2017/8
N2 - Zebrafish are able to completely regrow their caudal fin-folds after amputation. Following injury, wound healing occurs, followed by the formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. Here we show that, surprisingly, the phosphatase and tumor suppressor Pten, an antagonist of phosphoinositide-3-kinase (PI3K) signaling, is required for zebrafish caudal fin-fold regeneration. We found that homozygous knock-out mutant (ptena-/-ptenb-/- ) zebrafish embryos, lacking functional Pten, did not regenerate their caudal fin-folds. AKT phosphorylation was enhanced, which is consistent with the function of Pten. Reexpression of Pten, but not catalytically inactive mutant Pten-C124S, rescued regeneration, as did pharmacological inhibition of PI3K. Blastema formation, determined by in situ hybridization for the blastema marker junbb, appeared normal upon caudal fin-fold amputation of ptena-/-ptenb-/- zebrafish embryos. Whole-mount immunohistochemistry using specific markers indicated that proliferation was arrested in embryos lacking functional Pten, and that apoptosis was enhanced. Together, these results suggest a critical role for Pten by limiting PI3K signaling during the regenerative outgrowth phase of zebrafish caudal fin-fold regeneration.
AB - Zebrafish are able to completely regrow their caudal fin-folds after amputation. Following injury, wound healing occurs, followed by the formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. Here we show that, surprisingly, the phosphatase and tumor suppressor Pten, an antagonist of phosphoinositide-3-kinase (PI3K) signaling, is required for zebrafish caudal fin-fold regeneration. We found that homozygous knock-out mutant (ptena-/-ptenb-/- ) zebrafish embryos, lacking functional Pten, did not regenerate their caudal fin-folds. AKT phosphorylation was enhanced, which is consistent with the function of Pten. Reexpression of Pten, but not catalytically inactive mutant Pten-C124S, rescued regeneration, as did pharmacological inhibition of PI3K. Blastema formation, determined by in situ hybridization for the blastema marker junbb, appeared normal upon caudal fin-fold amputation of ptena-/-ptenb-/- zebrafish embryos. Whole-mount immunohistochemistry using specific markers indicated that proliferation was arrested in embryos lacking functional Pten, and that apoptosis was enhanced. Together, these results suggest a critical role for Pten by limiting PI3K signaling during the regenerative outgrowth phase of zebrafish caudal fin-fold regeneration.
KW - Journal Article
U2 - 10.1002/reg2.88
DO - 10.1002/reg2.88
M3 - Article
C2 - 29299324
SN - 2052-4412
VL - 4
SP - 217
EP - 226
JO - Regeneration
JF - Regeneration
IS - 4
ER -