TY - JOUR
T1 - Macrophage development from HSCs requires PU.1-coordinated microRNA expression
AU - Ghani, S.
AU - Riemke, P.
AU - Schonheit, J.
AU - Lenze, D.
AU - Stumm, J.
AU - Hoogenkamp, M.
AU - Lagendijk, A.K.
AU - Heinz, S.K.
AU - Bonifer, C.
AU - Bakkers, J.
AU - Abdelilah-Seyfried, S.
AU - Hummel, M.
AU - Rosenbauer, F.
N1 - Reporting year: 2011
PY - 2011
Y1 - 2011
N2 - The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation. [KEYWORDS: Animals, Cell Differentiation/genetics, Cell Line, Cell Lineage/genetics, Hematopoietic Stem Cells/ cytology/ metabolism, Macrophages, Peritoneal/ cytology/ metabolism, Mice, Mice, Inbred C57BL, MicroRNAs/ genetics, Myelopoiesis/genetics, Proto-Oncogene Proteins/antagonists & inhibitors/ genetics, RNA, Small Interfering/genetics, Trans-Activators/antagonists & inhibitors/ genetics, Zebrafish/embryology/genetics]
AB - The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation. [KEYWORDS: Animals, Cell Differentiation/genetics, Cell Line, Cell Lineage/genetics, Hematopoietic Stem Cells/ cytology/ metabolism, Macrophages, Peritoneal/ cytology/ metabolism, Mice, Mice, Inbred C57BL, MicroRNAs/ genetics, Myelopoiesis/genetics, Proto-Oncogene Proteins/antagonists & inhibitors/ genetics, RNA, Small Interfering/genetics, Trans-Activators/antagonists & inhibitors/ genetics, Zebrafish/embryology/genetics]
U2 - 10.1182/blood-2011-02-335141
DO - 10.1182/blood-2011-02-335141
M3 - Article
SN - 0006-4971
VL - 118
SP - 2275
EP - 2284
JO - Blood
JF - Blood
IS - 8
ER -