Metabolic signatures of rhizobacteria-induced plant growth promotion

Je Seung Jeon, Dominika Rybka, Natalia Carreno-Quintero, Ric C.H De Vos, J.M. Raaijmakers, Desalegn Etalo

Onderzoeksoutput: Bijdrage aan wetenschappelijk tijdschrift/periodieke uitgaveArtikelWetenschappelijkpeer review

12 Citaten (Scopus)
130 Downloads (Pure)

Samenvatting

Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with twelve Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Originele taal-2Engels
Pagina's (van-tot)3086-3099
Aantal pagina's14
TijdschriftPlant, Cell and Environment
Volume45
Nummer van het tijdschrift10
DOI's
StatusGepubliceerd - 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Metabolic signatures of rhizobacteria-induced plant growth promotion'. Samen vormen ze een unieke vingerafdruk.

Citeer dit