TY - JOUR
T1 - Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed
AU - van Eekeren, Nick
AU - Jongejans, Eelke
AU - van Agtmaal, Maaike
AU - Guo, Yuxi
AU - van der Velden, Merit
AU - Versteeg, Carmen
AU - Siepel, Henk
N1 - 7312, AnE
PY - 2022
Y1 - 2022
N2 - The current focus on intensification and maximizing productivity in agriculture can endanger soil biota and the ecosystem services they provide in such a way that it acts counterproductive and increases the dependence on external inputs. In this study, we aimed to identify the factors that are most limiting for the restoration of soil biota and their ecosystem services on sandy soils. To this end, we assessed microarthropod communities, their relationship with the aboveground food web and their effect on organic matter decomposition, in two land-use types: grasslands with agricultural land use and grasslands with nature land use. The latter are grasslands converted from agricultural land use, for the development of the Dutch National Ecological Network. For these land-use types, we took into account two main factors of disturbance: the number of years since the last tillage (i.e., plowing event), and the current grassland management (mowing or grazing). We found that the diversity of microarthropods was higher in nature grasslands than in agricultural grasslands. The abundance of microarthropods increased with time since last tillage for grasslands that were mown, but not for grasslands that were grazed. An agricultural grassland without tillage since 39 years had a microarthropod abundance similar to reference natural grasslands reported in previous research. The number of predatory beetles increased with a higher microarthropod abundance in mown grasslands, but not so in grazed grasslands. The number of fungivorous and herbofungivorous grazer microarthropods positively influenced the decomposition of soil organic matter as measured with the Tea Bag Index. Furthermore, we found a negative effect of Difenyl and total fungicide concentrations in the soil on (herbo)fungivorous grazers. Contrary to our expectations, we found more pesticide residues in nature grasslands than in agricultural grasslands. In conclusion, to restore the soil microarthropods and the ecosystem services they contribute to, the best practice is to strive for permanent grassland (without tillage) with mowing or low-intensity grazing (without compaction of the topsoil).
AB - The current focus on intensification and maximizing productivity in agriculture can endanger soil biota and the ecosystem services they provide in such a way that it acts counterproductive and increases the dependence on external inputs. In this study, we aimed to identify the factors that are most limiting for the restoration of soil biota and their ecosystem services on sandy soils. To this end, we assessed microarthropod communities, their relationship with the aboveground food web and their effect on organic matter decomposition, in two land-use types: grasslands with agricultural land use and grasslands with nature land use. The latter are grasslands converted from agricultural land use, for the development of the Dutch National Ecological Network. For these land-use types, we took into account two main factors of disturbance: the number of years since the last tillage (i.e., plowing event), and the current grassland management (mowing or grazing). We found that the diversity of microarthropods was higher in nature grasslands than in agricultural grasslands. The abundance of microarthropods increased with time since last tillage for grasslands that were mown, but not for grasslands that were grazed. An agricultural grassland without tillage since 39 years had a microarthropod abundance similar to reference natural grasslands reported in previous research. The number of predatory beetles increased with a higher microarthropod abundance in mown grasslands, but not so in grazed grasslands. The number of fungivorous and herbofungivorous grazer microarthropods positively influenced the decomposition of soil organic matter as measured with the Tea Bag Index. Furthermore, we found a negative effect of Difenyl and total fungicide concentrations in the soil on (herbo)fungivorous grazers. Contrary to our expectations, we found more pesticide residues in nature grasslands than in agricultural grasslands. In conclusion, to restore the soil microarthropods and the ecosystem services they contribute to, the best practice is to strive for permanent grassland (without tillage) with mowing or low-intensity grazing (without compaction of the topsoil).
KW - Disturbance effects
KW - Food web interactions
KW - Nature restoration
KW - Pesticide residues
KW - Regenerative agriculture
KW - Tillage
KW - national
KW - Plan_S-Compliant-OA
U2 - 10.1016/j.agee.2021.107682
DO - 10.1016/j.agee.2021.107682
M3 - Article
AN - SCOPUS:85116677028
SN - 0167-8809
VL - 323
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
M1 - 107682
ER -