TY - JOUR
T1 - Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly
AU - Kardol, P.
AU - Cornips, N.J.
AU - Van Kempen, M.M.L.
AU - Bakx-Schotman, J.M.T.
AU - Van der Putten, W.H.
N1 - Reporting year: 2007
Metis note: 3949;CTE; MTI; file:///C:/pdfs/Pdfs2007/Kardol_ea_3949.pdf
PY - 2007
Y1 - 2007
N2 - Plant–soil feedback affects performance and competitive ability of individual plants. However, the importance of plant–soil feedback in historical contingency processes and plant community dynamics is largely unknown. In microcosms, we tested how six early-successional plant species of secondary succession on ex-arable land induced plant-specific changes in soil community composition. Following one growth cycle of conditioning the soil community, soil feedback effects were assessed as plant performance in soil of their own as compared to soil from a mixture of the other five early-successional species. Performance was tested in monocultures and in mixed communities with heterospecific competition from mid-successional species. The role of soil microorganisms was determined by isolating the microbial component from the soil community, re-inoculating microorganisms into sterilized substrate, and analyzing plant biomass responses of the early- and mid-successional species. Plant–soil feedback responses of the early-successional species were negative and significantly increased when the plants were grown in a competitive environment with heterospecifics. In monocultures, three early-successional species experienced negative feedback in soil with a history of conspecifics, while all early-successional species experienced negative feedback when grown with interspecific competition. Interestingly, the nonnative forb Conyza canadensis showed the weakest soil feedback e We conclude that feedback between early-successional plant species and soil microorganisms can play a crucial role in breaking dominance of early-successional plant communities. Moreover the influences on soil microorganism community composition influenced plant community dynamics in the mid-successional plant communities. These results shed new light on how feedback effects between plants and soil organisms in one successional stage result in a biotic legacy effect, which influences plant commu
AB - Plant–soil feedback affects performance and competitive ability of individual plants. However, the importance of plant–soil feedback in historical contingency processes and plant community dynamics is largely unknown. In microcosms, we tested how six early-successional plant species of secondary succession on ex-arable land induced plant-specific changes in soil community composition. Following one growth cycle of conditioning the soil community, soil feedback effects were assessed as plant performance in soil of their own as compared to soil from a mixture of the other five early-successional species. Performance was tested in monocultures and in mixed communities with heterospecific competition from mid-successional species. The role of soil microorganisms was determined by isolating the microbial component from the soil community, re-inoculating microorganisms into sterilized substrate, and analyzing plant biomass responses of the early- and mid-successional species. Plant–soil feedback responses of the early-successional species were negative and significantly increased when the plants were grown in a competitive environment with heterospecifics. In monocultures, three early-successional species experienced negative feedback in soil with a history of conspecifics, while all early-successional species experienced negative feedback when grown with interspecific competition. Interestingly, the nonnative forb Conyza canadensis showed the weakest soil feedback e We conclude that feedback between early-successional plant species and soil microorganisms can play a crucial role in breaking dominance of early-successional plant communities. Moreover the influences on soil microorganism community composition influenced plant community dynamics in the mid-successional plant communities. These results shed new light on how feedback effects between plants and soil organisms in one successional stage result in a biotic legacy effect, which influences plant commu
U2 - 10.1890/06-0502
DO - 10.1890/06-0502
M3 - Article
SN - 0012-9615
VL - 77
SP - 147
EP - 162
JO - Ecological Monographs
JF - Ecological Monographs
IS - 2
ER -