Quantifying interaction networks and stability properties of plankton food webs using multivariate first order autoregressive modelling

A.S. Gsell, Deniz Özkundakci, Marie-Pier Hébert, Rita Adrian

Onderzoeksoutput: Hoofdstuk in boek/boekdeelHoofdstukWetenschappelijk

68 Downloads (Pure)

Samenvatting

Lakes and reservoirs have been identified as sentinels of global change as they integrate
changes in the surrounding landscape. While univariate indicator variables are relatively well assessed,
the lack of knowledge on temporal changes in species interactions under pressure has been identified as
a major gap in the bio-monitoring sciences. Multivariate autoregressive models can be used to assess
direction and strength of both direct and indirect interactions in complex communities over time. This
model framework also allows calculation of network stability properties (variance, resilience and reactivity). Moreover, the interaction matrix can be further analyzed for classical network structure properties (closeness- and betweenness centrality). These measures are useful indicators of changes in ecosystem stability and help identify biotic keystone groups and/or groups of species that are particularly
vulnerable to changes in the landscape
Originele taal-2Engels
TitelNovel Methods and Results of Landscape Research in Europe, Central Asia and Siberia
SubtitelVol. 3. Landscape Monitoring and Modelling
RedacteurenViktor Sychev, Lothar Mueller
Plaats van productieMoscow
UitgeverijRussian Academy of Sciences
Pagina's306-309
Volume3
ISBN van geprinte versie978-5-9238-0249-8
DOI's
StatusGepubliceerd - 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Quantifying interaction networks and stability properties of plankton food webs using multivariate first order autoregressive modelling'. Samen vormen ze een unieke vingerafdruk.

Citeer dit