Systematic identification of signal-activated stochastic gene regulation

G. Neuert, B. Munsky, R.Z. Tan, L. Teytelman, M. Khammash, A. van Oudenaarden

Onderzoeksoutput: Bijdrage aan wetenschappelijk tijdschrift/periodieke uitgaveArtikelWetenschappelijkpeer review

197 Citaten (Scopus)


Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model. This model yields insight into several dynamical features, including multistep regulation and switchlike activation for several osmosensitive genes. Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different environmental and genetic perturbations. Because our approach is general, it should facilitate a predictive understanding for signal-activated transcription of other genes in other pathways or organisms.
Originele taal-2Engels
Pagina's (van-tot)584-587
TijdschriftScience Magazine
Nummer van het tijdschrift6119
StatusGepubliceerd - 2013


Duik in de onderzoeksthema's van 'Systematic identification of signal-activated stochastic gene regulation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit