The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury

Rowan F van Golen, Megan J Reiniers, Nienke Vrisekoop, Coert J Zuurbier, Pim B Olthof, Jacco van Rheenen, Thomas M van Gulik, Barry J Parsons, Michal Heger

Onderzoeksoutput: Bijdrage aan wetenschappelijk tijdschrift/periodieke uitgaveArtikelWetenschappelijkpeer review

79 Citaten (Scopus)


SIGNIFICANCE: Hepatic ischemia/reperfusion (I/R) injury is an inevitable side effect of major liver surgery that can culminate in liver failure. The bulk of I/R-induced liver injury results from an overproduction of reactive oxygen and nitrogen species (ROS/RNS), which inflict both parenchymal and microcirculatory damage. A structure that is particularly prone to oxidative attack and modification is the glycocalyx (GCX), a meshwork of proteoglycans and glycosaminoglycans (GAGs) that covers the lumenal endothelial surface and safeguards microvascular homeostasis. ROS/RNS-mediated degradation of the GCX may exacerbate I/R injury by, for example, inducing vasoconstriction, facilitating leukocyte adherence, and directly activating innate immune cells.

RECENT ADVANCES: Preliminary experiments revealed that hepatic sinusoids contain a functional GCX that is damaged during murine hepatic I/R and major liver surgery in patients. There are three ROS that mediate GCX degradation: hydroxyl radicals, carbonate radical anions, and hypochlorous acid (HOCl). HOCl converts GAGs in the GCX to GAG chloramides that become site-specific targets for oxidizing and reducing species and are more efficiently fragmented than the parent molecules. In addition to ROS/RNS, the GAG-degrading enzyme heparanase acts at the endothelial surface to shed the GCX.

CRITICAL ISSUES: The GCX seems to be degraded during major liver surgery, but the underlying cause remains ill-defined.

FUTURE DIRECTIONS: The relative contribution of the different ROS and RNS intermediates to GCX degradation in vivo, the immunogenic potential of the shed GCX fragments, and the role of heparanase in liver I/R injury all warrant further investigation.

Originele taal-2Engels
Pagina's (van-tot)1098-118
Aantal pagina's21
TijdschriftAntioxidants and Redox Signaling
Nummer van het tijdschrift7
StatusGepubliceerd - 01 sep. 2014


Duik in de onderzoeksthema's van 'The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury'. Samen vormen ze een unieke vingerafdruk.

Citeer dit