Why Gender and Age Prediction from Tweets is Hard: Lessons from a Crowdsourcing Experiment

D. Nguyen, D. Trieschnigg, A. Seza Dogruöz, Rilana Gravel, Mariët Theune, Theo Meder, Franciska de Jong

Onderzoeksoutput: Hoofdstuk in boek/boekdeelBijdrage aan conferentie proceedingsWetenschappelijkpeer review

908 Downloads (Pure)


There is a growing interest in automatically predicting the gender and age of authors from texts. However, most research so far ignores that language use is related to the social identity of speakers,
which may be different from their biological identity. In this paper, we combine insights from sociolinguistics with data collected through an online game, to underline the importance of approaching age and gender as social variables rather than static biological variables. In our game, thousands of players guessed the gender and age of Twitter users based on tweets alone.
We show that more than 10% of the Twitter users do not employ language that the crowd associates with their biological sex. It is also shown that older Twitter users are often perceived to be younger. Our findings highlight the limitations of current approaches to gender and age prediction from texts.
Originele taal-2Engels
TitelProceedings of COLING 2014, the 25th Conference on Computational Linguistics
Plaats van productieDublin
UitgeverijAssociation for Computational Linguistics (ACL)
Aantal pagina's12
StatusGepubliceerd - 2014


Duik in de onderzoeksthema's van 'Why Gender and Age Prediction from Tweets is Hard: Lessons from a Crowdsourcing Experiment'. Samen vormen ze een unieke vingerafdruk.

Citeer dit