The Novel Lipopeptide Poeaamide of the Endophyte
Pseudomonas poae RE*1-1-14* Is Involved
in Pathogen Suppression and Root Colonization

Christin Zachow,1 Ghazaleh Jahanshah,2 Irene de Bruijn,3 Chunxu Song,3 Federica Ianni,4 Zoltán Pataj,3 Heike Gerhardt,4 Isabelle Planet,5 Michael Lämmerhofer,4 Gabriele Berg,6 Harald Gross,2 and Joos M. Raaijmakers3

1Austrian Centre of Industrial Biotechnology (ACIB GmbH), 8010 Graz, Austria; 2Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany; 3Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; 4Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen; 5CESAMO-ISM, UMR 5255, CNRS, Université Bordeaux I, 351 Cours de la Libération, F-33405 Talence, France; 6Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria

Submitted 3 March 2015. Accepted 5 March 2015.

Endophytic *Pseudomonas poae* strain RE*1-1-14* was originally isolated from internal root tissue of sugar beet plants and shown to suppress growth of the fungal pathogen *Rhizoctonia solani* both in vitro and in the field. To identify genes involved in its biocontrol activity, RE*1-1-14* random mutagenesis and sequencing led to the identification of a nonribosomal peptide synthetase (NRPS) gene cluster predicted to encode a lipopeptide (LP) with a 10-amino-acid peptide moiety. The two unlinked gene clusters consisted of three NRPS genes, designated *poeA* (cluster 1) and *poeB* and *poeC* (cluster 2), spanning approximately 33.7 kb. In silico analysis followed by chemical analyses revealed that the encoded LP, designated poeamide, is a structurally new member of the orfamide family. Poeaamide inhibited mycelial growth of *R. solani* and different oomycetes, including *Phytophthora capsici*, *P. infestans*, and *Pythium ultimum*. The novel LP was shown to be essential for swarming motility of strain RE*1-1-14* and had an impact on root colonization of sugar beet seedlings. The poeamide-deficient mutant colonized the rhizosphere and upper plant cortex at higher densities and with more scattered colonization patterns than the wild type. Collectively, these results indicate that *Pseudomonas poae* RE*1-1-14* produces a structurally new LP that is relevant for its antagonistic activity against soilborne plant pathogens and for colonization of sugar beet roots.

The species *Pseudomonas poae* was first described for a strain from the phyllosphere of *Poa* spp. (Benthet al. 2003). *P. poae* strain RE*1-1-14* was isolated from the internal part of sugar beet roots and was characterized as an antagonist of the soilborne pathogen *Rhizoctonia solani* (teleomorph: *Thanatophorus cucumeris* (A. B. Frank) Donk), the causal agent of damping-off and root rot disease of sugar beet (Zachow et al. 2008). Strain RE*1-1-14* promoted the growth of sugar beet and lettuce plants, and showed cultivar-dependent colonization patterns in sugar beet (Zachow et al. 2010). The composition of root exudates is different between *Rhizoctonia*- tolerant and -susceptible sugar beet cultivars (Mark et al. 2005), therefore potentially attracting different beneficial microbes, which could explain the different colonization patterns. Differences between cultivars in the intimate microbe–plant interaction have also been observed in maize, rice, and wheat and correlated to the efficacy to control pathogens and to promote plant growth (Meyer et al. 2010; Peiffer et al. 2013). The underlying mechanisms, however, are less understood.

To better understand the host colonization and interplay between endophytic strain RE*1-1-14* and sugar beet plants, the RE*1-1-14* genome was recently sequenced and compared with other available *Pseudomonas* genomes (Müller et al. 2013). *P. poae* RE*1-1-14* was placed in the *P. fluorescens* subgroup with a high level of similarity to *P. trifurcata* (Müller et al. 2010). Comparison of the whole RE*1-1-14* genome sequence with the sugar-beet-associated strain *P. fluorescens* SBW25 (Rainey and Burlsey 1996) showed a core genome of 4,242 genes and 555 unique genes for RE*1-1-14*. The genome sequence further showed that strain RE*1-1-14* is equipped with a set of genes which may contribute to the colonization of the rhizosphere and endosphere (Müller et al. 2013). These include genes for type three secretion systems, exoenzymes, and secondary metabolites, including a putative lipopeptide (LP). Within the *P. fluorescens* subgroup, the capacity to efficiently colonize plant surfaces is a key trait of biological control strains next to the production of antimicrobials (Raaijmakers and Mazzola 2012). For some *Pseudomonas* strains, LP contribute to colonization of plant root or leaf surfaces (Raaijmakers et al. 2010). For endophytic bacteria, however, little is known about the production of LP and their role in plant colonization.

In this study, we present the in silico analysis of nonribosomal peptide synthetase (NRPS) gene clusters in *P. poae* RE*1-1-14* encoding a putative LP. Structure predictions and chemical analyses of the purified LP led to the identification of a structurally novel cyclic lipodecadepsipeptide, designated poeamide. Phenotypic comparisons of the wild type and poeamide-deficient mutants revealed its contribution to swarming motility and antagonistic activity. In ad planta experiments, bacterial colonization of the root surfaces and cortex by *P. poae* RE*1-1-14* was analyzed by confocal...
RESULTS

Identification of the poaemide gene cluster in *P. poae* RE*⁺1-1-14.

The complete genome sequence of *P. poae* RE*⁺1-1-14 was investigated for the presence of NRPS genes involved in LP biosynthesis. This resulted in the identification of 15 genes annotated as NRPS encoding. Nine genes had identity scores of at least 84% in a BlastP comparison with NRPS genes from seven other *Pseudomonas* strains. A putative LP gene cluster with three genes, designated poaA, poaB, and poaC, was identified in the genome of *P. poae* RE*⁺1-1-14 and further analyzed (Fig. 1). Inspection of the flanking regions of the poaemide genes revealed two macrolide-specific efflux proteins downstream of poaC and LuxR-type regulatory genes upstream of poaA and downstream of poaC (Fig. 1).

Bioinformatic analyses revealed that the predicted PoaA, PoaB, and PoaC comprise two, four, and four modules, respectively, each consisting of a condensation (C), adenylation (A), and thiolation (T) domain. A tandem thioesterase (TE) domain was located at the carboxy terminal of PoaC. This architecture strongly resembles the OfaA-OfaB-OfaC biosynthetic system from *P. plecoglossicida* (PF-5), which is known to assemble the LP orfamide (Gross et al. 2007). In silico analysis of the A domain selectivity was performed to predict the amino acid composition of the peptide moiety (Ansari et al. 2004; Blin et al. 2013; Challis et al. 2000; Stachelhaus et al. 1999). Because genus-dependent deviations of the well-known A domain specificity code are empirically given, the prediction was later implemented with a phylogenetic approach in which all A domains were compared with those of functionally characterized NRPS systems from pseudomonads coding for LP (Fig. 2). Application of both approaches suggested that the peptide moiety of poaemide possessed the amino acid sequence Leu-Glu-Thr-Leu-Leu-Ser-Leu-Leu-Ser-Ile (Fig. 1). Hence, the predicted peptide sequence of poaemide differs from orfamide A at amino acid 4 (Ile versus Leu) and 10 (Ile versus Val) and, thus, possibly represents a new member of the orfamide LP family (Fig. 1).

Next, all C domains were analyzed and classified regarding their subtype, both automated (Blin et al. 2013; Ziemert et al. 2012) and manually, using sequence motif- as well as phylogeny-based approaches. This analysis revealed that the N-terminal C domain of PoaA represents a typical starter C domain (*C*₁) (Supplementary Fig. S1), which acylates the first amino acid (here: L-Leu), usually with a 3-hydroxy (3OH) fatty acid (FA) (Imker et al. 2010; Kraas et al. 2010; Rausch et al. 2007). Of the remaining nine C domains, two were identified as 1,2-C₅ domains while seven C domains belong to the subtype of dual condensation/epimerization (C/E) domains. Combined C/E domains were shown to catalyze epimerization reactions, which is inversion of the absolute configuration at one chiral center (i.e., in a NRPS context, the α-C atom of the amino acid that is loaded onto the T domain of the preceding module) (Balibar et al. 2005). Thus, the absolute configuration of the resultant peptide moiety could be theoretically deduced. Based on the fact that module eight and nine contained either regular 1,2-C₅ domains or a tandem TE domain, we hypothesize that Leu-7, Leu-8, and Ile-10 are L-configured. However, because several examples of C/E domains have been reported in the literature where chemical analyses were not in agreement with the in silico predictions (de Bruijn et al. 2008; Gross et al. 2007; Rokni-Zadeh et al. 2012), the resultant absolute configuration can currently not be reliably predicted from C/E domains and requires experimental validation.

Typical in *Pseudomonas* LP biosynthesis, a tandem of two distinct TE domains can be observed at the C-terminal end of the last NRPS of the cluster (Gross and Loper 2009). Phylogenetic analyses showed that the first TE domain of PoaC belongs to the subclass of type I TE domains (Hou et al. 2011; Roongwasawat et al. 2007), particularly of those occurring in *Pseudomonas* cyclic LP (CLP) NRPS systems, which catalyze the intramolecular cyclization of LP between the C-terminal amino acid and a Thr or Ser residue (Lange et al. 2012) (Supplementary Fig. S2). The second TE domain of PoaC clearly clustered with type II TE domains, which are thought to act in cis or as a lone-standing TE in trans to deacylate misprimed T domains, thereby ensuring a continuous LP production (Hou et al. 2011; Schwarz et al. 2002; Yeh et al. 2004). Considering the results of the TE domain analysis in combination with the predicted peptide sequence for poaemide (Thr at AA3 and Ser at AA6), it was assumed that poaemide represents a novel cyclic lipodepsipeptide, with either two or five exocyclic amino acids.

Identification of *P. poae* mutants deficient in LP production.

To facilitate the identification of the product of the putative poaemide gene cluster, mutants deficient in poaemide production were required. Because LP production is usually linked to biosurfactant activity, a random plasposon-derived mutant library was generated and individually screened for loss of biosurfactant activity by the drop-collapse assay. Out of 2,020 random mutants, we isolated 15 putative LP-deficient mutants. Based on cloning and sequencing of the regions flanking the

Fig. 1. Organization of the lipopeptide (LP) gene cluster identified in *Pseudomonas poae* RE*⁺1-1-14 by in silico analysis of the genome sequence. Three genes are designated: poaA, poaB, and poaC (green); macrolide-specific ABC-type efflux carrier (white); and hypothetical proteins (gray). Underneath the genes is the module and domain organization of the nonribosomal peptide synthetases encoded by poaA, poaB, and poaC. The domains are labeled by C, condensation; A, adenylation; T, thiolation; and TE, thioesterification. Underneath the domains are the amino acids predicted to be incorporated into the LP peptide moiety based on specific signature sequences in each A domain and subsequent phylogenetic analysis. The number associated with the amino acid refers to the position of the amino acid in the predicted LP peptide chain. Triangles represent the positions of the single transposon disruptions in the poaABC genes obtained by random mutagenesis.
transposon insertion, an interruption in six different genes was found, with three genes disrupted in one of the three NRPS genes (poaA, poaB, or poaC). Southern hybridization showed that two (poaA::Tn5 and poaC::Tn5) of these three mutants contained a single transposon integration (Supplementary Fig. S3). The other gene interruptions occurred in genes for which the putative regulatory function in LP production is as yet unknown (Supplementary Table S1); for example, hisM, encoding the histidine transport system permease protein HimM; rec2, encoding a recombinant protein that was also found as DNA internalization-related competence protein ComEC/Rec2 in _P. fluorescens_ Pf-5, _P. protegens_ Pf-5, _P. putida_ KU2440, and many other _Pseudomonas_ genomes; and yfbM, encoding the uncharacterized lipoprotein YfBM that is known as an epoxide hydrase in _Bacillus subtilis_ (Huang et al. 1999).

Isolation and structural analysis of poaeamide A.

To identify the product of the poaeamide gene cluster, ethyl acetate extracts of the wild-type strain and the poaA::Tn5, poaB::Tn5, and poaC::Tn5 mutants were prepared. Comparison of the metabolite profile by high-performance liquid chromatography (HPLC)-evaporative light scattering detector demonstrated that a group of three peaks (one main compound and two minor congeners) were present in the wild-type extract and absent in all three integration mutants (Supplementary Fig. S4). The major peak was tracked down in a large-scale cultivation batch (400 mL of resuspended cell cultures from 50 12-cm King’s B agar plates) and led to the isolation of a pure compound at a yield of 2.4 g, which was designated as poaeamide A.

The major compound poaeamide A gave an [M+Na]^+ peak at _m/z_ 1275.7805 in the high-resolution electrospray ionization mass spectrometry (ESI-MS) (Supplementary Figs. S6 to S8), for a molecular formula of _C_{67}H_{38}N_{19}O_{18}_ (calculated 1,275.7792, D = 1.0 ppm). The 1H nuclear magnetic resonance (NMR) spectrum of poaeamide A (Supplementary Fig. S11) was indicative for a LP by displaying exchangeable downfield amide signals (δH approximately 7.9 to 9.3), α-proton resonances (δH approximately 3.8 to 4.6), side chain protons (δH approximately 0.9 to 2.5), and several resonances characteristic for a FA moiety (δH 0.9 and 1.4). Additional evidence for the peptidic nature of poaeamide A was provided by the presence of carboxyl bonds in the 13C NMR spectrum (Supplementary Fig. S12) (δC approximately 171 to 181) and characteristic IR bands at 3,290, 1,640, and 1,540 cm⁻¹ (Supplementary Fig. S5). To acquire information regarding the building block composition and their connectivity, ESI tandem mass spectrometry experiments were carried out for this analysis, the [M+Na]^+ quasi-molecular ion was collected and fragmented (Supplementary Figs. S7 and S9). The combination of b and y fragments along with the associated dehydrated derivatives suggested the presence of the peptide sequence Xle-Glu-Thr-Xle-Xle-Ser-Xle-Xle-Ser-Xle-Xle (Xle = Leu or Ile) (Supplementary Table S2), which was in agreement with the proposed peptide sequence by bioinformatics (Fig. 3). Subtraction of the atoms accounted for the 10 identified amino acids from the molecular formula (C_{67}H_{38}N_{19}O_{18}) showed that the remaining fragment of this molecule had to contain 10 carbon and two oxygen atoms. The calculation, together with the observed fragment at _m/z_ 308 [M+Na]^+ peak of 3OH-FA-Leu led to the hypothesis that a 3OH-decanoic acid (3-HDA) was attached to the N terminus of the peptide sequence. The exact planar structure of poaeamide A was determined through NMR experiments. In-depth interpretation of the one-dimensional NMR (Supplementary Figs. S10 to S13) and two-dimensional NMR spectra (Supplementary Figs. S14–S20) of 1H-13C-15N-1H-13C-15N-HMB spectra of _H. putida_ KU2440, _H. influenzae_ _R_. and _H. pylori_ (H. pylori) revealed the presence of 10 individual amino acids (5 × Xle, 2 × Ser, 1 × Thr, 1 × Glu, and 1 × Ile) and one 3-HDA residue (Supplementary Table S3; Supplementary Fig. S21). These subunits were connected using a combination of 1H-13C-HMB correlations from the NH resonances to the amide carbonyls and observed Hα(i)→Hα(i+1) cross peaks in the 1H-ROESY spectrum to give the primary assembled linear sequence of poaeamide A. These residues accounted for 12 of the 13 double bond equivalents, indicating that the final degree of unsaturation must arise from poaeamide A having an overall cyclic constitution. A 1H-13C-HMB cross correlation, detected between the C-terminal Ile-10 carboxyl atom and the β-proton of Thr-3 demonstrated that the ring closure was formed between the Thr-3 side chain and the Ile-10 residue via a lactone bond. The resultant complete covalent structure of poaeamide A is shown in Figure 3.

Absolute configuration of poaeamide A.

Stereo-analysis of the 3-HDA of poaeamide A was accomplished by enantioselective HPLC-ESI-MS analysis, with Chiralpak ZWIX (+) as chiral stationary phase (Ianni et al. 2014), and found to be R-configured. The configuration of the amino acids was determined by enantioselective gas chromatography (GC)-MS analysis using chirasil Val. Prior to analysis by GC-MS, samples were subjected to acidic hydrolysis and subsequent derivatization. Configurations were determined by comparison of retention time of the amino acids to the same with those of authentic standards and found to be 1×L-Ile, 1×D-Allo-Thr, 2×D-Ser, 1×D-Glu, 4×L-Leu, and 1×D-Leu.
(Supplementary Table S4). However, the position of the D-Leu residue within the peptide backbone was evident neither from these data nor from bioinformatics or NMR spectroscopic data. To clarify this unsolved question and, thus, to fully stereochemically characterize poaeamide A, we embarked on a two-pronged partial degradation strategy. At first, enzymatic cleavage by pepsin was performed. However, peptide cyclization represents a protection mechanism and usually prevents enzymatic attacks. Hence, in order to guarantee better access of the enzyme, prior to enzymatic hydrolysis, compound poaeamide A was linearized by basic saponification of the lactone bond. After HPLC purification, the linear form was incubated with pepsin and the resultant major fragments were rechromatographed and analyzed by chiral GC-MS. Pepsin is known to cleave preferentially at the carboxyl side of L-Phe, L-Leu, and, to a lesser extent, L-Glu. The application of this enzymatic approach led to the conclusion that Leu-7 and Leu-8 were L-configured and that the D-Leu residue had to be located in the obtained 3-HDA-Leu-1-Glu-2-Thr-3-Leu-4-Leu-5 subpeptide. Because D-configured amino acids are resistant to hydrolysis by endopeptidases, it was deduced from this peptide fragment that Leu-5 was also L-configured. In order to obtain complementary fragments, we then switched to a chemical partial degradation strategy using mild acid hydrolysis of poaeamide A. The chemical digestion yielded 3-HDA-Leu-1, with no detectable D-Leu. Location of D-Leu was finally determined, examining the configuration of the subpeptide Thr-3-Leu-4-Leu-5, which contained one 1 × D-Leu and 1 × L-Leu residue, indicating that Leu-4 was D-configured. The resultant complete stereo-structure of poaeamide A is shown in Figure 3.

Biological activities of poaeamide.

Antifungal and antiamoebic activity. Surface tension measurements showed a response curve typical for lipopeptide surfactants and indicated that the critical micelle concentration (CMC) of reverse-phase (RP)-HPLC purified poaeamide is approximately 15 μg ml⁻¹ (Supplementary Fig. S22A). Lysis of Phytophthora capsici and P. infestans zoospores occurred at concentrations above the CMC value of 50 μg ml⁻¹ or higher (Supplementary Fig. S22B). Poaeamide caused immobilization and subsequent lysis of entire P. capsici and P. infestans zoospore populations within 1 min, whereas cell-free culture supernatant of the poaeamide-deficient mutants did not cause these responses.

When P. capsici, P. infestans, Pythium ultimum, and R. solani were grown in direct contact with the poaeamide solution, an inhibitory effect was found in fresh weight (except for Phytophthora infestans) and in dry weight of the mycelial biomass for all tested pathogens. A statistically significant reduction of the dry weight of mycelial biomass was found at 50 μg ml⁻¹ for R. solani, P. capsici, and P. infestans and at 250 μg ml⁻¹ for Pythium ultimum (Fig. 4).

Swimming, swarming, and biofilm formation. For several Pseudomonas strains, the involvement of LP in swimming, biofilm formation, regulation of attachment-detachment to and from surfaces, and root colonization has been reported (Loper et al. 2012; Pauwelyn et al. 2013; Raaijmakers et al. 2010). Soft agar assays showed that Pseudomonas paeae RE*1-1-4 was able to swim and swarm on 0.2 and 0.6% soft agar, respectively (Fig. 5). The poaeamide-deficient mutants poaA::Tn5, poaB:: Tn5, and poaC::Tn5 were completely impaired in swimming motility, whereas swimming motility was partly impaired and showed a regular concentric growth around the initial inoculum (Fig. 5). The role of poaeamide in biofilm formation could not be determined for P. paeae RE*1-1-4, no significant biofilm formation was observed for the wild-type strain in the in vitro assay. In a microtiter plate assay, neither the wild type nor the three poaeamide mutants produced significant biofilms compared with the reference strain P. fluorescens SS101 at temperatures from 15 to 30°C (Supplementary Fig. S23).

The role of poaeamide in root colonization and endophytic behavior.

The colonization patterns of wild-type P. paeae RE*1-1-4 and poaeamide-deficient mutants (poaA::Tn5, poaB::Tn5, and poaC:: Tn5) labeled with DsRed were monitored by dilution plating root suspension of 2-week-old roots cultivated in germination pouches and by confocal microscopy. The cell densities (CFU) of the wild type and mutants colonizing the whole root ranged from CFU log10 5.0 ± 0.2 to CFU log10 6.3 ± 0.3 per gram of root fresh weight (Fig. 6A). The three mutants reached significantly higher densities than the wild-type strain in both the whole root (including the endo- and ectophytic microenvironments) (Fig. 6A) and the root cortex under the epidermal cell layer (Fig. 6B) of the R. solani-tolerant sugar beet 'Jenna' (except poaC::Tn5) (Fig. 6B). No differences were detected between the wild-type strain and all mutants of the R. solani-susceptible 'Beretta' for both the endo- and ectophytic parts.

Using CLSM, two types of colonization patterns were found for both the Rhizoctonia-susceptible Beretta and the tolerant Jenna. First, single cells and clusters were found in epidermal cell interstices following the root cells growth or in junctions to root hairs (Fig. 7, first and third column). Second, biofilm-like colonization covering the sugar beet root surface, interstices,
and upper cortex under the layer of the epidermal cells was found in all treatments (Fig. 7, second and fourth column). No obvious differences in colonization were observed between the cultivars (Fig. 7). In comparisons between the wild type and the poaeamide-deficient mutants, the mutants showed less colonization compared with the wild type for both cultivars (Fig. 7, first and third column). Also, the structure of the presumed biofilms appeared different: in the wild-type biofilm, the cells clustered together and formed a dense carpet-like structure (Fig. 7B and D), whereas the mutant biofilms showed a loose arrangement and were found mainly in parts where the attachment of the cells was supported by other plant parts such as lateral roots, root hairs, and detached plant debris.

DISCUSSION

In this study, we identified the chemical structure and characterized the bioactivity of a structurally new LP, designated poaeamide, for endophytic P. porae RE^1-1-1-4. The poaeamide structure is similar to that of orfamide A to E produced by P. protegens Pf-5 (Loper and Gross 2007) and Pseudomonas sp. CMR12a (D'aez et al. 2014) (Table 1). However, poaeamide A differs from the orfamides A to E in the 3OH FA chain length, and the 4th and 10th amino acid residues of the peptide backbone.

Genome mining approach.

Poaeamide was identified employing a genome-driven approach. The peptide backbone of the poaABC gene cluster could be reliably deduced via A domain phylogeny analyses. Further phylogenetic analyses, this time with the tandem TE domains, could readily narrow the cyclization pattern to two possibilities. However, whereas the two-dimensional structure of the peptide backbone now can be precisely determined for Pseudomonas NRPS systems, the prediction of the resulting absolute configuration still represents a challenge. Due to the presence of ^1^3C domains and the adjacent tandem TE domains, the stereochemistry of Leu-7, Leu-8, and Ile-10 was reliably predicted to be L-configured. However, concerning C/E domains, a more complex picture emerges. The chemical analyses provided proof that only five of the seven C/E domains present in poaABC are actually active. The dual C/E domains of module 2 and 6 are obviously inactive and did not invert the absolute configuration of Leu-1 and Leu-5, respectively. The lack of prediction regarding C/E domains is substantiated by the fact that the sequence motif that determines the activity is currently unknown. However, it is possible that x-ray studies of active and inactive C/E domains or every C/E domain that is correlated with the corresponding resultant configuration will contribute to the understanding of the function and enable a prediction by bioinformatics in future.

Origin of the gene cluster.

From a chemical perspective, poaeamide A can be unambiguously classified as a member of the orfamide compound family. Based on this similarity, it can be envisioned that the substrate specificity of A domains of module 4 and 10, of an evolutionary preceding orfamide cluster, simply changed over time. However, notably a different picture emerges after

![Fig. 4: Inhibitory effect of poaeamide of Pseudomonas porae RE^1-1-1-4 on A-D, fresh and E-F, dry weight of mycelium biomass. Fungal and oomycete plant pathogens were tested: A and E, Rhizoctonia solani (R. s.); B and F, Phytophthora capsici (Ph. c.); C and G, Phytophthora infestans (Ph. i.); and D and H, Pythium ultimum (P. u.). Cultures in six-well plates were amended with increasing concentrations of crude poaeamide dissolved in sterile distilled water. Mycelial biomass was measured after 2 days post inoculation. Mean values of four replicates are shown and error bars represent the standard errors. Different letters indicate significant differences (P ≤ 0.05); n.d. = not determined.](image-url)
a comparison of the genetic backbone of the two known orfamidic NRPS systems with the poaeamide gene cluster. Whereas genes coding for production of the 10 modules of orfamide A to E are organized in a single operon in the genomes of P. protegens Pf-5 and Pseudomonas sp. CMR12a, orthologs for the LP in P. poae RE*1-1-14 are arranged at two distinct locations in the genome. Such a physically disconnected NRPS gene architecture has been observed for the biosynthetic pathway for entolysin (P. entomophila LB4) (Vallet-Gely et al. 2010), xantholysin A (P. putida BW11M1) (Li et al. 2013), and, particularly, for the synthesis of CLP of the viscosin family such as the eponymous viscosin B. viscosin (P. fluorescens SBW25) (de Brujin et al. 2007), masstolide A (P. fluorescens SS101) (de Brujin et al. 2008), and white-line-inducing principle (WLIP) (Rokni-Zadeh et al. 2012). Phylogenetic comparison of each NRPS domain consistently points to evolutionary relatedness of the poaeamide system with those of the liponadepsipeptides of the viscosin family. From Figure 2, it becomes apparent that all A domains of the poaeamide system cluster very closely with those of the viscosin/WLIP/masstolide systems, whereas the similarities to the A domains of the orfamide systems of Pseudomonas sp. CMR12a (D’aes et al. 2014) and P. protegens Pf-5 (Loper and Gross 2007) were less pronounced. The same tendency was found for the C and TE domains. Collectively, these observations suggest that the poaeamide gene cluster derived from the viscosin/WLIP/masstolide gene cluster rather than from orfamide systems. Most likely, during evolution, the trimodular visClwp1CmassC-like gene was extended by another leucine-specific NRPS module, leading to a tetramodular system coding in combination with the corresponding remaining NRPS genes (visABclwp1BmassAB) for a novel NRPS assembly line for the synthesis of a ring-extended visconin-derivative.

Regulation and transport.

Compared with our understanding of the ever-growing number of structurally novel LP and their biosynthesis genes, knowledge about the genetic network involved in regulation remains limited. Recently, three genes were found in P. fluorescens for their regulatory role in LP biosynthesis, including phgdh encoding D-3-phosphoglycerate dehydrogenase, the heat shock protein-encoding dnaK, and the transmembrane regulatory gene prhT, all three targeting the transcriptional repression of the LuxR-type regulator gene MassAR of masstolide biosynthesis in P. fluorescens SS101 (Song et al. 2014). The LuxR-type regulators are often found flanking the biosynthetic genes, as in the P. poae RE*1-1-14 genome; upstream of poaA and downstream of poaC (Fig. 1). LuxR-type regulators were described in similarly organized LP-biosynthesis systems in Pseudomonas sp. For example, the biosynthesis genes of orfamide in Pseudomonas sp. CMR12a are also flanked by two LuxR-type regulators. Also, the macrolide efflux proteins MacA and MacB have an arrangement in the poaeamide biosynthesis of P. poae RE*1-1-14 similar to that in orfamide and sessilin biosynthesis clusters of Pseudomonas sp. CMR12a (D’aes et al. 2014).

Biological activity and biological role of poaeamide.

LP produced by pseudomonads have diverse functions and activities, including a role in antimicrobial activity, swarming, biofilm formation, regulation of attachment-detachment to and from surfaces, and root colonization (Loper et al. 2012; Paswelyn et al. 2013; Raaijmakers et al. 2010). Poaeamide exhibits zoosporicidal activity similar to that of viscosin (de Brujin et al. 2007), masstolide A (De Souza et al. 2003), rhomolipids (Kim et al. 2000), and orfamides (Gross et al. 2007). Comparable with other Pseudomonas LP, poaeamide is essential for surface motility. The poaeamide-deficient mutants lost their swarming ability, as was found for mutants in the biosynthesis of masstolide (de Brujin et al. 2008), orfamide (D’aes et al. 2014), viscosin (de Brujin et al. 2007), and WLIP (Rokni-Zadeh et al. 2012). The role of LP in biofilm formation can differ considerably between different strains and structurally different LP (Raaijmakers et al. 2010). Here, the role of poaeamide in biofilm formation could not be determined under the in vitro conditions tested. P. poae RE*1-1-14 is known to be a good root colonizer, especially in Rhizoctonia-tolerant cultivars (Zachow et al. 2010). Cultivar-specific differences in colonization have also been reported for P. fluorescens CHA0 colonizing Swiss winter wheat (Triticum aestivum) ‘Arina’, ‘Zinal’, and ‘Cimetta’, which were able to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere (Meyer et al. 2010). Our results showed that poaeamide mutants reached

Fig. 5. Motility of Pseudomonas poae RE*1-1-14, lipopeptide-deficient mutants on 0.2% (swimming) and 0.6% (swarming) soft agar medium. Cell suspensions of the wild type and poaT::Tn5, poaB::Tn5, and poaC::Tn5 mutants were inoculated in the center of soft agar plates and incubated for 48h at 25°C. P. poae RE*1-1-14 swarms and swarms outward from the point of inoculation. The poaeamide-deficient mutants are partly impaired in motility when grown on 0.6% soft agar whereas, at 0.2%, the mutants showed a diffuse halo-like swimming.

Fig. 6. Abundances of bacterial cells on the sugar beet seedlings Jena (Rhizoctonia-tolerant) and Beretta (susceptible) cultivated in germination pouches for 2 weeks and inoculated with the Pseudomonas poae RE*1-1-14 wild type and the poaeamide-deficient mutants (poaA::Tn5; poaB::Tn5, and poaC::Tn5) colonizing A, the whole root, including the endo- and ecto-phytic microenvironaments; and B, root cortex under the epidermal cell layer. Log$_{10}$ of CFU per gram root fresh weight was indicated.
significantly higher densities than the wild-type strain in both the whole root (Fig. 6A) and the root cortex (Fig. 6B), especially for the tolerant Jenna. These results are in contrast to earlier studies that showed an advantage of LP in seed and root colonization. For example, in P. fluorescens SS101, the LP massetolide A was found to positively contribute to colonization of tomato roots (Tran et al. 2007). Also, for P. fluorescens DSS73, the LP amphiphin contributed to the colonization of sugar beet seed and roots (Nielsen et al. 2005). For B. subtilis 6051, the LP-deficient mutant M1 showed smaller patches on Arabidopsis roots compared with the wild type (Bais et al. 2004). In the study by Krujit et al. (2009), however, no differences in colonization abilities of P. putida strain 267 and its putisolvin-deficient mutant EP1 were observed. The authors concluded that, at least for cucumber plants, putisolvin-like surfactants do not contribute to rhizosphere competence.

Compared with other studies, our contrasting results regarding absolute cell counts can be resolved from the perspective of

Table 1. Puty acid (PA) residue and amino acid (AA) arrangement of the 10 modules containing nonribosomal peptide synthetase (NRPS) genes of *Pseudomonas protegens* Pf-5 (orfamides A–C) (Gross and Lopez 2009), *Pseudomonas* sp. CMR12a (orfamides D and E, D’ae et al. 2014), *P. putida* RE*1-1-14 (poaeamide A), and the nine modular NRPS genes of *P. fluorescens* SBW25 (viscosin) (de Brujin et al. 2007) and *P. fluorescens* SS101 (masetolide A) (de Brujin et al. 2008).^a^

<table>
<thead>
<tr>
<th>Name</th>
<th>FA</th>
<th>AA1</th>
<th>AA2</th>
<th>AA3</th>
<th>AA4</th>
<th>AA5</th>
<th>AA6</th>
<th>AA7</th>
<th>AA8</th>
<th>AA9</th>
<th>AA10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orfamide A</td>
<td>30H-C14</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>lle</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Orfamide B</td>
<td>30H-C14</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Orfamide C</td>
<td>30H-C12</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>lle</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Orfamide D</td>
<td>30H-C12</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Orfamide E</td>
<td>30H-C14:1</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Poaeamide A</td>
<td>30H-C10</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Viscosin</td>
<td>30H-C10</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Masetolide A</td>
<td>30H-C10</td>
<td>Leu</td>
<td>Glu</td>
<td>Thr</td>
<td>lle</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
</tr>
</tbody>
</table>

^a^ FA and AA in bold indicate differences in RE*1-1-14.

BERETTA

JENNA

Fig. 7. Confocal laser-scanning microscopy of sugar beet cultivars Beretta (left panel, columns 1 and 2) and Jenna (right panel, columns 3 and 4). Seed were cultivated in germination pouches for 2 weeks and inoculated with DAlred-labeled *Pseudomonas putida* RE*1-1-14 wild type (row 1) and poaeamide-deficient mutants *poeA::Tn5* (row 2), *poeB::Tn5* (row 3), and *poeC::Tn5* (row 4). Two colonization patterns were visualized for both cultivars: single cells or small colonies in A, E, I, and M, for Beretta and in C, G, K, and O, for Jenna; and biofilm-like network arrangements of the cells in B, F, J, and N, for Beretta and in D, H, L, and P, for Jenna. Scale bars represent 10 μm.

806 / Molecular Plant-Microbe Interactions
qualitative colonization patterns. In our microscopic analyses, the poaeanamide mutants showed fewer single cells attached to the plant roots, and the dimensions and the network constitution in the biofilm-like pattern showed a rather scattered colonization. In comparison, the wild type was observed to be organized in denser and more compact, biofilm-like structures, revealing a robust attachment to the plant roots and indicating that poaeanamide is involved in attachment and settlement on plant root surfaces. The recent study of D’aces et al. (2014) suggested an influence of the CLPs on the ability to form biofilms in the plant-associated Pseudomonas sp. CMR12a. Cell density and, more importantly, the spatial distribution of cells are critical in regulating particular factors and exerting a certain lifestyle in a population-density-dependent manner, which is known as quorum sensing (QS) (Hense et al. 2007; Liu et al. 2011). QS-mediated control of mechanisms in plant-associated microorganisms have been reported for Pseudomonas, Stenotrophomonas, and Serratia spp. (Alavi et al. 2013; de Bruijn et al. 2008; Liu et al. 2011; Müller et al. 2009; Song et al. 2014). The genome of RE*1-1-14 contains a homolog gene of hdx5, which putatively encoding the synthesis of the QS molecule N-dodecanoyl-L-homoserine lactone (DHL) in P. fluorescens F113 and P. fluorescens SBW25 (Laeu et al. 2000; Moshynets et al. 2014). In the latter strain, an increased concentration of DHL has been shown to enhance biofilm thickness (Moshynets et al. 2014). The wild type of RE*1-1-14 is able to form dense colonies, presumably resulting in accumulation of autoinducers and induction (e.g., increased synthesis of extracellular polysaccharides) of particular factors, which facilitates settlement in biofilms (Ebert et al. 2007; Moshynets et al. 2014; Wei and Zhang 2006). The regulatory mechanisms at locally high cell density promotes biofilm formation on the root surface (Fig. 7) but prevents further spread, which may explain the lower number of CFU found for the wild type (Fig. 6). Thus, the microenvironment and compact biofilm formation may be more difficult to accurately estimate the number of cells based on CFU due to stronger adherence, possible clumping, or aggregation leading to underestimated numbers of the actual cell number present. Taken together, the scattered root colonization and the high overall cell counts of the mutants suggest that poaeanamide may be necessary for initial adherence to trigger biofilm formation that subsequently affects cell-to-cell communication and density-dependent expression of genes with the endophytic lifestyle.

MATERIAL AND METHODS

Genome analysis—Identification and phylogeny of NRPS genes and domains.

For identification of putative NRPS genes involved in LP synthesis, the genes annotated as in the genome of P. poae RE*1-1-14 were used in BlastP comparisons with whole-genome sequences of Pseudomonas spp. available in the Pseudomonas genome databases. The PFAM sequence search and the PKS/NRPS analysis were used for cluster and structure analysis of the A, T, C, and TE domains of the predicted NRPS genes. For phylogenetic analyses, alignments were made with CLUSTALX (version 1.81). Trees were inferred by neighbor joining in CLUSTALX using 10,000 bootstrap replicates. The peptide moiety of the putative LP signature sequences were identified in the A domains, as described by Stachelhaus et al. (1999) and Challinor et al. (2000).

Surfactant production assay and surface tension measurement.

To test culture supernatants for biosurfactant activity, over-night cultures grown in NBII (Sifin, Berlin) and King’s B (KB) medium (per liter; 20 g of proteose peptone, 1.5 g of MgSO₄•7 H₂O, 1.2 g of KH₂PO₄, and 10 g of glycerol) were used according to Kuiper et al. (2004). Briefly, after the addition of 5% methylene blue (which is useful for photography but has no influence on droplet surface tension), 20 and 50 µl were pipetted as a droplet onto paraffilm. The spreading of the droplet on the paraffilm was observed, the droplet was allowed to dry, and the diameter of the dried droplet was recorded. Measurements of this diameter are in millimeters and represent means of at least two experiments. Surface tension measurements with pure compounds were carried out with a K6 tensiometer (Krüss GmbH, Hamburg, Germany) and were performed at 25°C.

Extraction and chemical identification of the poaeanamide produced by P. poae RE*1-1-14.

P. poae RE*1-1-14 was grown on KB medium for 48 h at 25°C and the crude poaeanamide was extracted as described by de Bruijn et al. (2007). Analytical HPLC separations were carried out according to de Bruijn et al. (2008). Prior to the chiral analyses, poaeanamide was purified using RP-HPLC, employing a linear gradient of 50:50 to 100:0 methanol/H₂O (0.1% trifluoroacetic acid) over a period of 30 min, followed by isotropic elution at 100% methanol for an additional 10 min (column: Phenomenex Kinetex XB-C18, 4.6 by 250 mm, 1 ml min⁻¹ flow rate, and UV monitoring at 215 nm). Poaeanamide eluted under these conditions after Rₜ = 32.5 min. All solvents were purchased as HPLC grade. Details about the employed spectroscopic instruments and methods, chiral HPLC-MS analysis of the 3-HDA portion of poaeanamide A, chiral GC-MS analysis of poaeanamide A, partial degradation of poaeanamide A by enzymatic, and acid hydrolysis are described in the corresponding description parts in the supplementary materials.

Mutagenesis of P. poae RE*1-1-14 and DsRed transformation.

P. poae RE*1-1-14 was subjected to random plasposon mutagenesis with pPKm-laci plasmid modified from Choi et al. (2006). Transformants were screened for single insertions by Southern blot analysis using the kanamycin resistance gene as a probe. Single insertion mutants were screened for surfactant production by resuspending cells from agar plate cultures in sterile demineralized water to a density of approximately 10⁷ cells ml⁻¹ followed by a drop-collaps assay on paraffilm. Plasmidic residue from the putative mutants and sequence analysis of the regions flanking the plasposon were performed according to the methods described by Dennis and Zylstra (1998). Transformation with a rhizosphere-stable plasmid containing DsRed gene was performed for the wild type and poaeanamide mutants according to Zachow et al. (2010).

Southern hybridization.

Southern blot analysis was performed to determine the number of integrations of the TnSatCZKm element in the surfactant-deficient mutants of P. poae strain RE*1-1-14. Genomic DNA of the mutants was digested with 5 U of PstI (Promega, Leiden, The Netherlands), an enzyme without restriction sites in the TnSatCZKm element (de Lorenzo et al. 1990). The digestions were performed in a total volume of 100 µl containing 1.0 µg of DNA. The digested DNA was precipitated with 2.5 volumes of 99% ethanol and 1/10 volume of 3 M sodium acetate, washed with 70% ethanol, dissolved in 15 µl of sterile distilled water, and separated on 1% agarose gels in 1× Tris-acetate-EDTA (10 mM, 500 mM) buffer. DNA transfer from agarose gels to Hybond N nylon membranes (Amersham Pharmacia Biotech) was performed according to standard methods (Sambrook and Russell 2001). The high-stringency conditions consisted of prehybridization for 1 h at 65°C.
hybridization for 12 h at 65°C, and membrane washings: twice each for 5 min with 2× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) plus 0.1% sodium dodecyl sulfate (SDS) at room temperature and twice each for 20 min with 0.1× SSC plus 0.1% SDS at 65°C. The 800-bp kanamycin probe, specific for the kanamycin resistance gene contained within the Tn5lacZKm element, was obtained by digoxigenin labeling using primers KmF (5′-GGAAAGCTTCTGCTCGAGG-3′) and KmR (5′-TCGACGACATCAATGAAACTGCG-3′) (Biologeo, Nijmegen, The Netherlands); hybridized probes were immuno-detected with the polymerase chain reaction dig labeled mix according to the protocols provided by the supplier (Roche, Mannheim, Germany).

Activity assays—Zooplankton lysis, and antibiotic and antifungal activity.

Zooplankton were obtained from Phytophthora infestans strain 88069 grown on rye sucrose agar (RSA) (Caten and Jinks 1968) for 10 days at 18°C and from P. capsici LT3239 grown on V8 agar for 7 days at 25°C under lab light. Plates were flooded with sterile distilled water and incubated at 4°C. After 4 h, P. infestans zoospores were collected and exposed to cell-free supernatant of Pseudomonas paeoe RE11-1-14 wild type, paoA::Tn5, paoB::Tn5, and paoC::Tn5 at 1 × 10⁶ cells ml⁻¹. Sugar beet seed were cultivated under gnotobiotic conditions in germination pouches (Mega International, Minneapolis, MN, U.S.A.) according to the manufacturer’s instructions and cultivated at 25°C in a regime of 16 h of light and 8 h of darkness and filled with sterile tap water. After 2 weeks, the germinated plants were removed for microscopic and cultivation analyses. For the latter, roots were harvested and ground with sterile 0.85% sodium chloride and dilutions were spread on NBII agar plates amended with appropriate concentration of tetracycline (40 μg ml⁻¹) and kanamycin (50 μg ml⁻¹) for determination of CFU gram fresh weight. For determination of endophytic (upper layer of the cortex under the epidermal cell layer) colonization, roots were harvested in 2.5 ml of sterile 0.85% NaCl amended with 0.02% sterile Tween40 (Sigma-Aldrich, Vienna). To get bacteria from endophytic root habitat and the cortex, roots were washed with 10 consecutive cycles of sonication for 1 min (ELMA Ultrasonic LC-1304H, Singen, Germany) and were subsequently vigorously vortexed. The washed roots were transferred to a new tube containing 2.5 ml of sterile 0.85% NaCl amended with Tween40 (all steps at 4°C), before grounding with 2 ml of 0.85% NaCl. Dilutions were spread on NBII agar amended with antibiotics. CFU were determined for both cultivars in four replicates each.

Colonization pattern of transformed bacteria on seedling roots were monitored in depth using a Leica TCS SP CLSM (Leica Microsystems, Wetzlar, Germany) equipped with argon and helium/neon lasers. Two confocal light channels were observed simultaneously. Filter settings were adjusted to achieve the maximum signal from the DsRed protein and low background autofluorescence of the plant tissue with an excitation of 563 nm and an emission of 582 nm. Maximum projections of an appropriate number of 0.8-μm-deep optical slices were applied to visualize the root sections (confocal stacks). Up to three scans per optical slice were averaged to improve the image resolution and to reduce noise. Single TIFF snapshots were processed with ImageJ (Schneider et al. 2012) and imported in Microsoft Office PowerPoint to be assembled and labeled.

Bioinformatic analysis.

The amino acid sequences of the NRPSs involved in paoAeamide biosynthesis were compared and analyzed with NRPS-PKS web-based software (National Institute of Immunology) (Ansari et al. 2004) and antiSMASH (Blin et al. 2013). Multiple alignments were performed using the MEGAl6 according to Tamura et al. (2013). Phylogenetic trees were visualized with DRAuRee, MEGAl6, or geneious R7.

ACKNOWLEDGMENTS

We thank N. C. A. de Ruijter (Wageningen University) for technical advice, of in slide microscopy; A. Stock (Analytical Services & Applied NMR Development at Bruker Biospin GmbH) for generous support and NMR measurements; D. Wustuba and her team (Mass Spectrometry Department, Institute for Organic Chemistry, University of Tuebingen) for HR-MS measurements; the Struktur- und Innovationsfonds Baden-Württemberg (SI-BW) and the German Research Foundation DFG for support of H. Gross (GRK647/3-1) and M. Lierzenhofer regarding funding of scientific equipment as part of the DFG’s Major Research Instrument Programme (as per Art. 91h GG, INSF 37/821-1 FUGO), respectively; and K. H. Lammers (University of Tennessee, Knoxville, TN, U.S.A.) for providing Phytophthora capsici LT3239. G. Jahanshah gratefully acknowledges Ph.D. fellowship.

AUTHOR-RECOMMENDED INTERNET RESOURCES

CLUSTALX software: http://www.ebi.ac.uk/clustalw/

National Institute of Immunology: http://www.nio.res.in/

PFAM sequence search: http://pfam.sanger.ac.uk/search/sequence

PKS/NRPS analysis: http://nrps.igs.umaryland.edu/nrps/

Pseudomonas genomes: www.pseudomonas.com

Pseudomonas genome databases: http://v2.pseudomonas.com