Jacob Ouseel [“Oiselius”] (1631–1686): A Versatile Book Collector, Telescope Maker and Dubious Scholar from the Netherlands

Huib J. Zuidervaart, Den Haag

This paper on the diverse pursuits of Jacob Ouseel is divided into the following sections: introduction, a short biography, Ouseel as a telescope maker stimulated by Johannes Hevelius, the philosophical component of optics, Ouseel’s notes against superstition and astrology, further contact with Hevelius, professorial career in Groningen, conclusions. The appendix contains an extensive list of optical instruments from the auction sale catalogue of Ouseel’s library.

Introduction

It was only by accident that I came across the book collector Jacobus Oiselius (in Dutch: “Ouseel”, “Oesel” or “Oisel”) as a telescope constructor. A few years ago, the New York rare-book dealer Jonathan Hill offered for sale the auction catalogue of Oiselius’ former library of almost twelve thousand volumes.1 This enormous private library had been put up for sale on 11 May 1688 in the city of

Groningen (Figs. 1 & 2). In this capital of one of the Northern provinces of the Dutch Republic, Ouseel (as we will call him) had been a professor of constitutional and international law from 1667 until his death in 1686, serving as rector magnificus of Groningen University in the years 1677–1678 and 1680–1681.

Figures 1 & 2. Title page of the 1688 auction catalogue (left) with the frontispiece produced with the 1692 Leiden re-issue of Ouseel’s catalogue (Tresoar, Leeuwarden / KB, The Hague).

To my amazement, the Hill catalogue mentioned in Ouseel’s library the presence of 43 telescopes, microscopes and other optical equipment – a remarkable observation, as this collection of mostly astronomical telescopes would thus be the largest one recorded in any Dutch auction sale catalogue of the seventeenth century! Even the estates of well-known Leiden astronomers such as Jacob Gool

I have chosen to follow the Dutch spelling “Ouseel”, as Jacob’s father and all his Leiden relatives signed their name in this way. “Oiselius” was the Latin spelling. In the only preserved letter in the Dutch language our Jacob signed his name “Oiseel” (Jacob Oiseel to Gerard Brandt, 14 January 1673, Leiden University Library, shelfmark PAP 15).
Jacob Ouseel (1596–1667), Samuel Kechel ab Hollensteyn (1611–1668) and Christiaan Melder (d. 1681), who all had served – and observed – at the famous Leiden University Observatory, possessed fewer telescopes.¹

What on earth had led to such an impressive collection of optical equipment by an almost unknown professor of law at one of the lesser-known universities on the outskirts of the Dutch Republic? As I looked for more biographical details, Ouseel turned out to be a rather mysterious figure.² From the nineteen years of his Groningen professorship hardly anything else is known than the mere fact that he taught law from the books of Hugo Grotius.³ The Groningen archives reveal very little about this man, who was a life-long bachelor. In 1672 he contributed the sum of 300 guilders for the defence of the then besieged city of Groningen,⁴ and in 1685 he bought the house next to his, overlooking the Groningen harbour, “facing the crane”.⁵ This larger house probably became a necessity in order to house Ouseel’s growing private library. The auction catalogue of 1688 reveals that Ouseel’s library was one of the finest and largest in the seventeenth-century Dutch Republic;⁶ it is said that only the library of Nicolaas Heinsius, auctioned in Leiden in 1682, had been larger.⁷

¹ Catalogus bibliothecae Jacobi Golii (Leiden 1668), p. 138: no. 16: “Telescopia 2”; Catalogus Rarissimorum Librorum & Instrumentorum Mathematicorum … Samuelis Caroli Kechelii ab Hollensteyn (Leiden 1668), pp. 19–20: no. 9: “Tubus van 12 voeten”; no. 10: “Tubus van 6 voeten”; no. 11: “Tubus van 5 voeten”; no. 12: “Tubus van 2 voeten en een half”. See also no. 82: “verscheyde geslepen glasen”; no. 121: “een houte instrument om de vlacte van de Sun te observeeren”; and no. 122: “Een houte instrument om de Eclipsis te observeeren”. The two latter instruments probably were projection devices;
³ Catalogus variorum & insignium … librorum … Christiaani Melder (Leiden 1682), p. 67: “Verrekykers N1,2; Tubi tot verrekykers, N.1,2,3; Verscheyde doosen met geslepen glasen tot verrekykers, N.1,2,3,4,5,6,7,8; Noch verscheyde tubi en glasen tot verrekyckers behorende”.
⁴ Groningen archive, family archive Gockinga , inv. no. 52*: charter, testifying the sell to Jacobus Oiselius of a house and yard in Groningen for 1.350 Carolus guilders, “next to the buyer’s house”, 29 April 1685. The location probably can be identified with the present day “Noorderhaven”.
Ouseel’s book collection featured inter alia a copy of the *editio princeps* of Homer’s *Iliad* and *Odyssey* of 1488 (now in Groningen University Library).

His library contained books in all scholarly fields. No wonder that, like Heinsius’ auction catalogue, the Oiseelius catalogue was valued as a useful reference tool. For merely bibliographic purposes the catalogue was reissued three times – in 1690, 1692 and 1698.

For instance the section on mathematics and philosophy alone counted no fewer than 1461 book titles. Among these were not only classics of astronomy, such as Sacrobosco’s *Sphaera Mundi* (1485), Ptolemy’s *Almagest* (1515), Copernicus’ *De revolutionibus* (second edition, 1566), Brahe’s *Opera Omnia* (1648), Kepler’s *Astronomia nova* (1609) and his *Harmonice Mundi* (1668). It comes as no surprise to learn that the sale of this collection aroused great interest. The university in nearby Franeker even tried to purchase the entire library as a whole, but the negotiations with Ouseel’s heirs failed.

Decades later, in 1711, this painful failure was still recalled by the Franeker librarian, in a conversation with the visiting German scholar Zacharias Conrad von Uffenbach.

When Ouseel’s collection was put up for sale, even the French king sent a delegate (the scholar Joachim Dalancé) to purchase books from this

11. See: H.W. de Kooker and K.J.S. Bostoen, *Book Sales Catalogues of the Dutch Republic, 1599–1800*, “Introduction to the project”, on: http://bsc.idc publishers.info. See also Cat. 1494. Four different title pages are known of this catalogue: (1) Leiden: Jacobus Hackius, 1687 – the actual auction, held in Groningen, 1 May 1688); (2) Leiden: Jacobus Hackius, 1690 – without the date of the sale; (3) Leiden: Pieter van der Aa, 1692 – with an additional engraving and a preface added; (4) Leiden: Boudewijn van der Aa, 1698, as the 1692 edition, but with a different title page: *Thesaurus nitidissimus Oizelianus elegantium Librorum Hebraicorum, Graecorum, Latinorum...quos magna labores ac sumptus collocavit...Jacobus Oiselius*.
12. “Zacharias Conrad von Uffenbach in de academiebibliotheek Franeker, 1710” *De Vrije Fries* 6 (1853) pp. 305–390, esp. pp. 339–344: “The librarian assured us that the States of Friesland had been inclined to buy the complete library of Oiselius; in the end there remained only a difference with the heirs of some thousand guilders about the purchase price”. Unfortunately the archives of the Franeker University contain no details about these negotiations (information courtesy of Arjen Dijkstra).
exquisite collection, a mission which, however, failed – according to Dalancé, because many bidders had been determined to bid extreme prices.13

But why did this lawyer evidently foster such a profound interest in telescopes? Ouseel not only possessed numerous telescopes and a few microscopes; his auction catalogue reveals that he even possessed the necessary equipment for the grinding and polishing of telescope lenses (see the appendix). Moreover, his library contained all major works on seventeenth-century telescopy. Starting with the very first book on telescopes, the rare edition of Sirturi’s \textit{Telescopium} (Sirturus, 1618), he possessed all seminal works in this field, such as Schyrlo de Rheita’s \textit{Oculus Enoch et Eliae} (1645), Borel’s \textit{De Vero Telescopii Inventore} (1656) and more recently published works such as Huygens’ \textit{Astroscopia compendiaria} (1684) and Zahn’s \textit{Oculus Artificialis} (1685).

It was the late Inge Keil who, in 2009, provided me with information that shed some light on Ouseel’s interest in optics and astronomy. In her extensive archival investigations Keil had come across correspondence between Jacob Ouseel and the well-known astronomer Johannes Hevelius. Around the same time the Groningen historian Klaas van Berkel drew my attention to a copy of Ouseel’s eulogy, printed in Groningen in 1686.14 Combined, these two sources provided me with a satisfactory explanation for the presence of all these telescopes.

\begin{addendum}
\item[14] Mensinga, \textit{Oratio funebris} (n. 4).
\item[15] For the international commercial activities of Philippus Ouseel, see for instance the Gemeente-archief Rotterdam, notary archive no. 142, deed no 361, fol. 537 (23 December 1658), testifying about a deal between Abraham van der Hutten, merchant in Cadiz (Spain), Antonij van Vollenhoven, merchant in Schiedam (Holland), Philips Meyer, merchant in Amsterdam, and the two Danzig merchants Philips Ouseel and Cornelis Cops (information Courtesy of Arjen Dijkstra).
\end{addendum}

Short biography

Jacob Ouseel came from a family of French origin. His grandfather Jacques Ouseel had fled France in the late sixteenth century, settling first in Flanders, then leaving for Holland. In 1585, in Leiden, he had married Geleyne van Peene from Flanders. Their son, Philippus Ouseel, was born in that city. Philippus, Jacob’s father, became a merchant and moved to Danzig, the well-known Baltic trading centre (nowadays Gdansk, Poland).15 In Danzig, on 4 May 1631, our Jacob was born as the eldest son of Philipus and his Leiden-born wife Maria Le Noir. The couple had four more sons (Philip, Johannes, Andreas, Michael) and two daughters (Magdalena and Maria). The parents returned regularly to the
During one of these visits young Jacob was enrolled in a primary school in the city of Haarlem. At least that is what is said in 1686, in the eulogy by Jacob Ouseel’s Groningen colleague Johannes Mensinga. In Haarlem Jacob also attended the French School in the Ursulasteeg, led by the distinguished calligrapher Master Jean de la Chambre. In 1646, at the age of fifteen, he went to Leiden, for instruction in geometry, mathematics, French and Latin, at the private school of the mathematician and medical doctor Willem Minten. In 1648 he entered the Amsterdam Athenaeum Illustre, where he followed courses of the Amsterdam professors Gerard Johannes Vos (Vossius), Arnold Senguerd and Johannes Klenck. Two years later, on 8 February 1650, at the age of twenty, Jacob matriculated at Leiden University, as a student of philosophy and arts. At that time he lived in the house of his homonymous uncle, the Leiden merchant Jacob Ouseel, on the St. Jacob’s Canal. In Leiden he followed courses of

16 Cf. Regionaal Archief Leiden, notary archive, inv. no. 442, deed no. 142 (July 1649): last will of Philip Ouseel, “coopman” and Maria le Noir, his wife, both living at Danzig, but at that time on visit in Leiden.

19 Ibidem. On 19 May 1628 at Leiden university had been matriculated “Gulielmus Minten Leidensis” as a student of the arts, at the age of 14. In Ouseel’s time Willem Minten probably had taken over the school of his father Johannes Minten, in the village of Rijnsburg, near Leiden. In 1634 Johannes Minten is mentioned there as a schoolmaster in writing, ciphering and the French language. In 1599 he had cooperated with the mathematicians Ludolf van Ceulen and Jan Pietersz Dou in the Corte onderrichtinge dienende tot het maecken vande reductien vande jaer-custingen tot gereede penningen […] volgende t placet der heeren Staten (Leiden, 1599). Cf. Regionaal Archief Leiden, Archive of the “Heilige Geest- of Arme Wees- en Kinderhuis” at Leiden, no. 4710.

21 Matriculation 8 Feb. 1650: “Jacobus Uselius, Philippii filius, Dantiscanus. Annuarum viginte, Philosophiae et Artium studiosus, habitans apud patruum suum [= his uncle], Jacobum Useel op de St Jacobs grafi” (Leiden University Library, ASF, inv. no. 10, p. 235). Our Jacob was the fifth student with this name at Leiden University. (1) On 22 May 1604 a Jacobus Ouseel (*1594) from Leiden was registered, followed (2) on 7 September 1618 by a Jacobus Ozeel (*1598); (3) on 8 August 1623 a Jacobus Ouzel (*1612) from Leiden was the next and (4) on 20 November 1625 a Jacobus Ozeel (*1609) from Antwerp was matriculated, followed a month later by again (3): Jacobus Oiselius (*1612) from Leiden. See for the last Jacobus Ozeel (1612–1661), making a name as a Catholic convert, the Nieuw Nederlandsch Biografisch Woordenboek, 8 (1930), pp. 1247–1248. Cf. also Album studioorium Academiae Lugduno-Batavae [= Leiden] 1575–1875 (The Hague 1875).

22 The Leiden Regional Archief contains many notary deeds concerning this uncle, the merchant Jacob Ouseel. Another merchant, also called Jacob Ooseel (1601–1666), married to Maria Stoop, lived in the 1650s in the city of Dordrecht. Both their portrait busts are in the Dordrecht Municipal Museum.
the professors Adriaan Heereboord and Johannes de Raey in philosophy; Claude Salmassius, Marcus Zuerius Boxborn and Antony Thys (Thysius) in literature; Lambert van Baerle (Barlaeus) in Greek; and Jacob Gool (Golius) in mathematics and Oriental languages. Among others, Leiden University was famous for its philological tradition, started by the late professors Justus Lipsius and Joseph Scaliger, but continued by their successors. In this tradition the critical editing and annotation of ancient texts was regarded as one of the summits of scholarship. Stimulated by this, Ouseel also embarked on such a project. In 1652, at the age of 21, he produced a new edition of Minucius Felix’s Octavius, one of the earliest examples of Christian Latin literature. In the eighteenth century Ouseel’s edition, which he had boldly dedicated to Queen Christina of Sweden, would be severely criticised. The philologist Schoenemann then looked upon Ouseel as a “futile commentator”, who had made “many incredibly stupid mistakes”. He advised his readers to skip all 212 pages filled with Ouseel’s notes and to consult only the reprinted remarks of previous commentators. The French biographer Nicéron added to this his comment that Ouseel’s edition had not required much effort, for “he had done little else than transcribing the notes of others, which he often presented as his own”. For this reason the Hamburg scholar Fabricius labelled Ouseel in 1738 as a mere plagiarist in his “Centuria Plagiariorum”, a gallery of notorious copyists. However, during Ouseel’s life this Octavius edition seemed to have been rather well received. Twenty years later, in 1672, the Leiden publisher Jacob Hack even would issue a new – otherwise unchanged – edition in the more popular octavo format.

Nevertheless, for the young Ouseel there remained a lot to learn. After two years at Leiden University, he was eager to hear other scholars and to explore other fields. In April 1653 he matriculated as a student at nearby Utrecht University. Here, again, he studied under established Dutch scholars such as Cyprianus Regneri ab Oosterga, who introduced him into Roman law, and Antonius Matthaeus II, who taught criminal law. With their classes, these judicial scholars laid the foundations of Ouseel’s professional career. Having found his way to

26 Nicéron, Mémoires (n. 4), p. 387: “Il publia cet ouvrage a l’age de 21 ans, mais il ne lui a pas beaucoup couté, puisqu’il n’a fait que transcrire les remarques des autres, qu’il a fait souvent passer pour la siennes”.
28 Matriculation Utrecht University: “Jacobus Ouzelius Dantiscanus.”
law, Ouseel returned to Leiden the next year, in order to finish his education there and obtain a doctorate in law. In line with the usual academic custom, Ouseel now embarked on a European “Grand Tour”, starting in England. Here he visited not only the Bodleian Library and its librarian John Barlow, but also scholars like the theologian John Owen, the historian Lewis du Moulin and the mathematician John Wallis. In France he followed a similar scheme. Mensinga, the eulogist who evidently had Ouseel’s – now missing – travel journal at his disposal, reports that Jacob again visited (and admired) various libraries and met a number of scholars. The most important of these were the French polymath and astronomer Ismael Boulliau, the librarian Jacques Dupuy (Puteanus) and the physician and man of letters Samuel Sorbière. A journey to Italy was cut short in Geneva by the news that the plague was raging further south. Instead, Ouseel decided to visit England for a second time. In April 1657 he returned to the Netherlands, sailing home with a Dutch vessel to the Isle of Walcheren, where he paid a visit to the Zeeland cities Flushing, Middelburg and Veere.

In Leiden, Ouseel returned to his earlier philological work, this time by editing a work on law by the Roman author Gaius (ca. 110–ca. 180). With a clear understanding of the importance of maintaining good contacts, Ouseel dedicated this work to eight high-ranking magistrates of Holland, including three members of the board of Leiden University (Fig. 3). As a sought-for university appointment did not become available, Jacob settled down as a lawyer, first in Utrecht in 1660, and two years later in The Hague, the seat of the States General, the highest governmental institution of the Dutch Republic.

Ouseel as a telescope maker, stimulated by Johannes Hevelius

By May 1661 Ouseel had become interested in optics. Through his Danzig-based father, he had asked the famous Danzig astronomer Johann Hoewelke (1611–1689), better known as Johannes Hevelius, for his opinion concerning the best telescopes available on the market. Hevelius was indeed the right person to ask. He had considerable experience and a large network of contacts, going back to

30 According to Nicéron, Oiselius’ notes on Gaius were taken mostly from an edition by Jérôme Alexandre, published in Venice in 1660. Cf. Nicéron, Mémoires (n. 4), p. 388.
Jacob Ouseel

1627, when he had embarked on the study of astronomy and mathematics. This training under the tutelage of the polymath Peter Crüger (1580–1639) included also instrument making and engraving.

In 1630, Hevelius had travelled to Leiden to study law, and while there he acquired a basic knowledge of the Dutch language. In 1634, after having made a “Grand Tour” to London and Paris, Hevelius returned home to work in his father’s brewery, which he inherited shortly thereafter. This brewery and the wealth that went with it enabled him, in 1641, to erect a large astronomical ob-

Figure 3. Ouseel’s edition of Gaius’ Antiquissimi Jurisconsulti (1658). Presentation copy to Leiden University Library with his signature.

servatory. Although at that time our Jacob Ouseel was only a ten-year-old child (he lived in Danzig until about 1645), it is plausible that he had some recollections of Hevelius at the start of his career as an astronomer. From Hevelius’ correspondence we learn that he was acquainted with the Danzig branch of Ouseel’s family. Both Philippus Ouseel, Jacob’s Leiden-born father, and Jacob’s younger brother Michael Ouseel evidently had contacts (probably business relations) with Hevelius. It was also in the small Dutch merchant community of Danzig that in 1663 Hevelius would find his second wife, Catherina Elisabetha Koopman. It was therefore a small step for Jacob Ouseel to ask the famous Danzig astronomer for information and advice.

Hevelius was a gifted man with many practical skills. For his astronomical observatory he fabricated most of the equipment personally, including his quadrants and telescopes. In 1647 he published the results of his lunar observations in a large folio volume entitled *Selenographia sive Lunae Descriptio*. This work contained 133 full-page copper-plate engravings, carved by Hevelius himself. For decades this book would remain the standard work on lunar topography. In the process of preparing his *Selenographia*, Hevelius used almost exclusively telescopes with a Keplerian optical configuration: i.e., with only two convex lenses. But in the early 1640s the Augsburg instrument maker Johann Wiesel discovered that an arrangement of four or five lenses enhanced the performance of the telescope greatly. Together with other improved techniques on the grinding and polishing of lenses, Wiesel’s findings were published in 1645 in Antwerp, by the Capucine monk Anton Schyrl de Rheita, who had met Wiesel two years before in Augsburg. In due time this news also reached Hevelius. In 1656 Hevelius bought such a “Wiesel Fernrohr”, of length 12 feet (3.7 m) and equipped with 5 lenses, for 180 German thaler. As Hevelius had previously ground and polished his telescope lenses himself, this purchase probably served not only the actual use of the instrument, but also as a means to investigate – and probably copy – its lens configuration. And indeed from the late 1650s onwards Hevelius gradually changed to compound eye pieces, according to Wiesel’s system.

So when in 1661 Hevelius answered the inquiry of Ouseel’s father, he indeed recommended the telescopes of Johann Wiesel as the best on the market, together with comparable instruments made by Wiesel’s Italian counterpart Eustachio Divini. Hevelius also warned that it would be very difficult to obtain any products from these workshops. Having received this answer, Jacob Ouseel rendered thanks to the Danzig astronomer for his kind advice. Indeed, Hevelius had been

right that he would not find the recommended instruments in his home town of Utrecht, but during his search Ouseel had found “a humble man, a producer of surveying instruments, who could also make excellent telescopes”.33 This artisan probably was the mathematical instrument maker Johannes Sneewins (d. ca. 1670), who worked in Utrecht from the 1640s onwards. It is known that Sneewins produced most of the astronomical equipment for the Utrecht University Observatory, founded in 1642.34 From him Ouseel ordered a telescope of about eleven feet, which appeared to be good enough to observe the Moon and the planet Jupiter with its four satellites, even though Ouseel assumed that the quality of his Utrecht telescope, for which he had paid only seven reichsthaler, could not equal Wiesel’s products, which cost about 80 ducats (or 160 reichsthaler).35

Figure 4. Telescopic observations of the planet Saturn, made by J. Ouseel in Utrecht on 19 and 22 May 1661. Fragment of his letter to J. Hevelius, Obs. de Paris, letter no. 673.

So far this contact between Ouseel and Hevelius only seems to concern the purchase of a novel optical device. However, from the rest of the letter, it becomes clear that Ouseel was much more deeply involved in practical optics. He had carefully read Borel’s De Vero Telescopii Inventore, a booklet published in The Hague in 1656, in which the “first invention of the telescope” had been examined. From this text he had concluded that the presumed “first inventor” Zacharias Jansen of Middelburg had been not very different from other craftsmen in this

33 Keil, Von Ocularien (n. 32), p. 223.
35 A Dutch silver “Ducaat” had a value of 50 “stuivers” or two “reichsthaler”.

Bearing in mind the duty of each subsequent generation to expand the achievements of its predecessors, Ouseel started to grind and polish lenses himself, in an attempt to construct a telescope of his own. From the letter, it appeared that in this effort Ouseel was led by written instructions from Hevelius, passed on to him by his parents. For this distant help he expressed his gratitude to “the noble astronomer”:

Ouseel’s first grinding achievements seemed to have been rather satisfactory. As proof of his success as a telescope maker, Ouseel sent Hevelius a few observations of the planet Saturn, made with his own, personally crafted telescope (Fig. 4). His efforts to grind a lens with a hyperbolic curvature had, however, failed dramatically. Ouseel considered these results an embarrassment, evidently not worth showing to others.

This episode in Ouseel’s life was also recalled in his eulogy. In 1686, in the funeral speech, Mensinga tells us that his late colleague had been inspired to grind lenses by reading Descartes’ *La Dioptrique*. This book had already been

37 About the field of view of Ouseel’s telescope we learn that he could not see the lunar disk in one piece, so he saw less than 30 arc minutes.
published in 1637, but in the mid-seventeenth century it was still considered the
best work available on the grinding and polishing of lenses. Descartes, too, had
tried to grind hyperbolic lenses, as theoretically being the best shape to avoid
spherical aberration, but as later became clear, this desire went beyond the tech-
nical possibilities of the seventeenth-century technicians.

With this knowledge about Ouseel’s life, the riddle of the bulk of optical
equipment in his 1688 auction catalogue seems to be solved. But it still is not
clear why he embarked on this subject. In fact, Jacob Ouseel is only one of a
large group of Dutch intellectuals who in this period became involved in theoret-
ical and practical optics. Best known is, of course, the example of the two Huy-
gen brothers, Christian and Constantijn Junior, who – stimulated by their fa-
ther, Constantijn Senior (Descartes’ closest Dutch friend) – started to grind
lenses in The Hague in late 1654. But there were many others, some of whom
were more-or-less professional technicians, like Caspar Calthof in Dordrecht
(active since 1650). Most of them, however, were rather well-to-do intellectu-
als, like Johannes Hudde, burgomaster of Amsterdam (involved in optics at least
since 1656); Johannes van der Wijck, a nobleman from Delft, serving as a
military engineer (identified as a skilled optician in 1654); Isaac Vossius, li-
brarian and son of the Amsterdam professor Gerard Johannes Vossius (involved
in optics since 1658); Baruch de Spinoza, the famous Jewish philosopher and
Hudde’s protegé (working as an optician in Rijnsburg since 1661); the high-
ranking army officer Franciscus Guilielmus de Nylandt (called a skilled “polishi-
er” in 1668); and in a slightly later period Bernardus Fullenius Junior, who in
1674 would travel to Danzig, to be instructed into optics and astronomy by Jo-

40 Anne van Helden & Rob Van Gent, “The Lens Production by Christiaan and Constantijn Huy-

42 Rienk Vermij & Eiso Aitzema, “Specilla circularia: an unknown work by Johannes Hudde”,

43 Cf. Zuidervaart, “The ‘invisible technician’ made visible” (n. 34).

44 Fokko Jan Dijksterhuis, “A View from the Mountain. The Development of Isaac Vossius’ Opt-
1689) and the European World of Learning* (Leiden: Brill, 2012).

45 W.N.A. Klever & J. van Zuylen, “Insignis Opticus. Spinoza in de geschiedenis van de optica”,
De Zeventiende Eeuw 6 (1990), pp. 47–63.

hannes Hevelius personally.47 They all built on the optical work of René Descartes, Isaac Beeckman and other savants interested in optics, thus paving the way for a next generation of successful Dutch opticians and microscopists, such as Anthony van Leeuwenhoeck, Nicolaas Hartsoeker, Johannes Swammerdam and Anthony De Heyde.48 Ouseel’s case is therefore indicative of a much broader movement in seventeenth-century Dutch society, in which there were no disciplinary boundaries, but, on the contrary, there was still a close intertwining of the “old” humanist and philological world of learning and the emerging new philosophy of the natural sciences. So, what can we learn from Ouseel’s life in regard to this curious interest in practical optics, an interest that he evidently shared with many contemporary intellectuals?

The philosophical component of optics

First, why was there such an emphasis on optics? The answer to this question has much to do with the character of seventeenth-century philosophy. First there was the notion of the “book of nature”.49 The idea that God’s omnipotence could be learnt from the study of nature became stronger with the invention of optical instruments such as the telescope and the microscope. This in itself triggered part of the attention directed at these devices. Optical instruments and the phenomena they revealed, large as well as small, could lead to the contemplation of God’s creation. Moreover, study devoted to the perfection of optical instruments also involved the human eye. According to Christiaan Huygens, for instance, there was no organ other than the eye that reflected better the admirable hand and mathematical nature of divine providence.50

In addition, there was an element of entertainment and competition. For the well-to-do elite with enough spare time, it was fun to do some meticulous work with their own hands, especially when a spirit of competition was involved. Even an inexperienced lens grinder such as Ouseel expressed at the start of his optical

47 Cf. Arjen Dijkstra, *Het vinden van Oost en West in het Friesland van de zeventiende eeuw. De polemiek tussen Lieuwe Willemsz Graaf (1652–1704) en Berhardus Fullenius Jr. (1640–1707)*, Doctoraalscriptie Universiteit Groningen 2007; privately printed (Leeuwarden 2011). According to his eulogy, Fullenius had prepared a – now missing – manuscript entitled *De Telescopiis et microscopiis*. He also corresponded with Christiaan Huygens on dioptrical issues. After Huygens’ death Fullenius (then professor at Franeker University), would become one of the editors (together with the Leiden professor Burchard de Volder) of Christiaan Huygens’ posthumously published dioptical work, the *Opuscula posthuma* (Leiden 1703).

49 For the notion of the book of nature, see Eric Jorink, *Reading the Book of Nature in the Dutch Golden Age, 1575–1715* (Leiden 2010).

50 Huygens, ‘De l’œil et de la vision (1670–1690)’, in: *Oeuvres*, (n. 38), vol. 13, p. 797.
work the ambition to perform better than Zacharias Jansen, the presumed first inventor of the telescope. This tendency to perform as a kind of polite “gentleman-scholar” certainly must have been part of the motivation to embark on the grinding and polishing of glasses.

However, the optics of the human eye also raised philosophical questions. This was one of the main reasons why, for instance, a philosopher such as Descartes had been so deeply involved in optical and anatomical research. Descartes’ failure to construct a better-performing telescope even brought him to the Dutch Republic, where in 1629 he first and foremost consulted Adriaen Metius, professor of mathematics at the university in Franeker, as well as the latter’s learned brother Jacob Metius, at that time one of the other better-known claimants for the invention of the telescope. This connection of practical optics and philosophical reasoning can also be found in the Dutch philosopher Baruch de Spinoza. Like Ouseel, Spinoza started in 1661 with his work on practical optics. Spinoza’s first biography, written in about 1678, unmistakably links Spinoza’s philosophical programme and his interest for optics:

Every day he used a few hours to prepare lenses for microscopes and telescopes, in which he excelled so much that, if death had not prevented it, he probably would have discovered the most beautiful secrets of Optics. So ardent was he in the search of truth ...

The Spinoza scholar Wim Klever made the following comment about this: “Spinoza’s scientific philosophy is a major attempt to liberate man from his optical illusions, or rather: to make him realise that there are optical illusions which he can never get rid of as they are caused by natural mechanisms”. An important aspect of this philosophical “quest for truth” was human perception. Like Descartes before him, Spinoza was fully aware that this perception was partly generated by the eye and partly by the human mind.

53 “Il employoit tous les jours quelques heures à préparer des verres pour des Microscopes et des Téléscopes, en quoi il excelloit de sorte que si la mort ne l’eût prevenu, il est à croire qu’il eût decouvert les plus beaux secrets de l’Optique. Il était si ardent à la recherché de la Vérité …”. Citation from J.M. Lucas, La vie et l’esprit de Mr Benoit de Spinosa (written 1678, published 1719), cited after Klever & Van Zuylen, “Insignis Opticus” (n. 45), p. 47.
54 Klever &Van Zuylen, “Insignis Opticus” (n. 45), p. 57.
fore vital for fathoming the eye’s function. The grinding and polishing of lenses contributed to the perfection of optical theory and was therefore useful in the “quest for truth”. Furthermore, with these lenses optical instruments, such as telescopes and microscopes, could be constructed, which in turn could extend true knowledge, in astronomy as well as in microscopy. In this way, empirical experimentation, alongside mathematical reasoning, turned out to be an effective and permissible means of elaborating philosophy in such a way that in later years would be called “science”. It is no wonder, then, that Ouseel’s library contained Spinoza’s two major works.56 Bearing in mind that Spinoza, after his settlement in Rijnsburg in (probably) July 1661, frequently gathered a group of adherents at his home, presenting lectures on optics, it is even tempting to suppose that Ouseel’s move from Utrecht to The Hague in the same year, 1662, had something to do with an inclination to Spinozism.57

Ouseel’s notes against superstition and astrology

That Ouseel confronted his training in classical humanist philology with new empirical scientific knowledge becomes evident from the 1666 edition of the classical text Noctes Atticae by the Roman linguist and lawyer Aulus Gellius (130–after 180). The new edition of this classical tract, with additional commentaries, had been started by Ouseel’s former Leiden teacher, the professor and librarian Antonius Thysius (ca. 1613–1665).58 At his death in January 1665 Thysius had left an almost finished manuscript, and as his former student with experience in editing classical texts, Ouselius was requested to complete the book. It seems plausible that the initiative for this request came from the Leiden publisher Petrus Leffen.59 He had been Thysius’ main publisher, and in 1654 Leffen also had published Ouseel’s doctoral dissertation, as well as his 1658 edition of Gaius.

Ouseel worked fast. From the twenty chapters of Gellius’ book, Thysius had finished eleven, so Ouseel still had to comment on nine. He managed to finish

56 Bibliotheca Oizeliana (n. 8), Qu 422 (Spinoza’s Principia Philosophiae Cartesi (1663) & Qu 454 Spinoza’s Opera Posthuma (1672).
59 Pieter Leffen, active as an academic book seller, publisher and auctioneer since 1652, had his shop “in den vogel Phenix” in the “Clocksteegh” at Leiden.
his job early in 1666. In contrast to his earlier work, Ouseel now carefully distinguished between his own (and Thysius’) comments and those of his predecessors Claude Saumaise and Peter Lambeck, whose earlier commentaries were indicated by initials.

In the last chapters of the *Noctes Atticae* Ouseel came across a passage in which Chaldean astrology was discussed. Led by his own knowledge of recent astronomy and his personal experience as an observer of the heavens, he found it necessary to insert in this book some elaborate astronomical and optical comments. In his letter to Hevelius, dated 31 September 1665 [sic], Ouseel stated that he was glad that Gellius’ remarks on Chaldean astrology had given him an excuse to oppose astrology. In his commentaries in the *Noctes Atticae*, Ouseel made a sharp distinction between astronomy and astrology. To his readers he pointed out that all astrological calculations depended on the observational work of predecessors. The Chaldeans astrologers on which Gellius had written had to trust the observations of Ptolemy and Hipparchus. All planetary positions used in astrology were only known through empirical findings. However, it was clear that the ancient astronomers had not noticed all relevant phenomena. The telescope had brought to light that Jupiter was a centre of rotation of its own, having several satellites revolving around it. More recently it had also been discovered that Saturn had a ring. Hence, astrological predictions could not be as certain as was claimed. In this respect Ouseel was especially harsh against the French astrologer Jean Baptiste Morin, whose *Astrologia Gallica* had been published only very recently, in 1661, in The Hague. The correlation that astrologers like Morin assumed to exist between physical causes and moral actions thus could not be maintained, neither by logical reasoning nor by empirical observation. Ouseel therefore had to raise his voice, for else there was the danger that the bright light that had been spread in recent decades, as a result of excellent liter-

60 Aulus Gellius, *Noctes Atticae, cum selectis novisque commentariis et accurata recensione Antonii Thysi et Jacobi Oiseli* (Leiden: Petrus Leffen, 1666). Ouseel sent a presentation copy to Hevelius on 4 June 1666. The latter confirmed the receipt of the book on 30 June 1666 (Observatoire de Paris [abbreviated in the sequel as OdP], Hevelius correspondence, letters no. 1128 & 1129). The Leiden edition of *Noctes Atticae* was competing with a 1666 Amsterdam reprint of the earlier edition of 1651, issued by the publishers Johannes Janssonius van Waesberge & Eliza Weyerstraet.

62 Oiselius to Hevelius, 31 [sic!] September 1665. OdP, Hevelius correspondence, no. 1066. Earlier, in May 1665, Ouseel already had asked the astronomer’s advice regarding the “Centiloqi of Ptolemy” from the *Tratado de Astrologia*, compiled in the early fifteenth century by the Spanish author Enrique de Aragon, Marquis de Vilena. On Ouseel’s astronomical comments in his edition of Gellius, see: Hafner, “‘Paideia und Humanitas’” (n. 61).

64 Ibidem, p. 744.

65 Hafner, “‘Paideia und Humanitas’” (n. 61), p. 333.
ary and scientific learning (in tanta bonarum literarum & scientiarum luce), would be extinguished.\(^{66}\)

Moreover, only very recently, in the months December 1664–April 1665, Europe had been confronted with the appearance of two bright comets, emerging shortly after one other. Observations had led to mathematical predictions about their paths. For Ouseel it was clear that these objects were merely astronomical, not harbingers of anything dreadful, as was thought by astrologists. In his earlier-mentioned letter to Hevelius, he had firmly rejected the notion presented by the professor in theology and philosophy in Breda, Johannes Schuler (Schulerus). In this tract, published in Latin as well as in the vernacular, Schuler had presented comets in the classical Ptolemaic way as objects with astrological meaning.\(^{67}\) In his commentaries in the Noctes Atticae, Ouseel was also rather hard on those who not only continued to point to an astrological meaning of comets, but also could not endure their critics:

There is [in addition to the astrologers] another class of people, who do not want to give up the idea of astrological predictions by comets, but at the same time they raise their voices against those who claim that a comet foretells nothing. They have found a new way of predicting, which they call Prognosticatum Theologicum. […] Far more excellent are those who are rightly suspicious of what one extracts as predictions of the comets.\(^{68}\)

Ralph Hafner has noted recently that Ouseel in his comments foreshadowed the influential work of Pierre Bayle against superstitious belief in comets, published in 1682.\(^{69}\) Hafner, however, neglects the fact that in the Dutch Republic – where Bayle’s book was composed and published – the work on comets by Balthasar Bekker, written in the vernacular and published in 1683, was deemed as im-

\(^{66}\) Gellius, Noctes Atticae (n. 60), p. 741; Hafner, “‘Paideia und Humanitas’” (n. 61), p. 335.

\(^{68}\) “Est autem & aliud genus hominum, qui quidem ullam Astrologorum praedictiones de Cometis nulatenum admittere volunt, sed & pariter adversus eos, qui Cometas nihil omino praenunciare dicunt, declamando pulmones exercent; ipsi vero novum prognosticandi genus, quod Prognosticatum Theologicum appellant, invenere. […] quibus merito suspeta sunt, queacunque de Cometarum prognosticationibus in medium adferuntur”. Gellius, Noctes Atticae (n. 60), pp. 742–743; Hafner, “‘Paideia und Humanitas’” (n. 61), pp. 335–336.

\(^{69}\) Hafner, “‘Paideia und Humanitas’” (n. 61), p. 336.
imported as Bayle’s. Moreover, recent scholarship has brought to light that Bayle’s view in the 1680s was not that special at all. Eric Jorink, for instance, has shown convincingly that in 1665–1666 most Dutch commentators on the appearance of the new comets already rejected the old astrological view that comets predicted fearful events. Even in 1662, before the appearance of the two bright comets, Nicolaes Witsen, then a student at the Amsterdam Athenaeum, in a disputation devoted to the meaning of comets, opposed the view that comets were signs of anything fearful. In 1665 several other authors expressed a similar opinion, such as the Utrecht professor in rhetoric and history Johannes Graevius, or the Middelburg Calvinist minister Johannes de Mey. They all published tracts in which they stressed – mainly on philological grounds – that comets were part of the physical character of nature and thus only a demonstration of the wonderful composition of God’s creation. Of course there was still much confusion about the nature of comets. In the 1660s many different theories were discussed among European scholars. Nevertheless, it is now evident that in his criticism of astrology and the natural character of comets, Ouseel did not stand alone. His comments show that the paths of both Bayle and Bekker were paved by many forerunners. In itself, the comet discussion in the Netherlands presents a nice example of Harold Cook’s recent observation that the scientific revolution has a firm Dutch accent.

From his commentaries on Gellius’ *Noctes Atticae*, it is evident that Ouseel, unlike most other Dutch authors on comets, did not confine himself to philological, philosophical or theological arguments. Ouseel thought highly of the achievements of the telescope, and regarded the observations and discoveries made with this instrument as convincing proof of the physical nature of the heavenly phenomena. In his commentaries on the comets, Ouseel stressed the importance of Galileo’s, as well as Huygens’, discoveries of satellites around the

planets Jupiter and Saturn.75 The fact that these heavenly bodies were evidently centres of rotation was convincing proof that new astronomical knowledge could be gathered. Elsewhere in the commentaries of Gellius, Ouseel even explained to his readers the basic properties of the telescope. And again he was very clear about the fact that this marvellous \textit{Tubus Opticus} could reveal phenomena that were unknown to the ancients.76 Which wondrous things had been discovered in the past decades? The telescope had revealed spots and flames on the Sun’s surface and mountains and valleys on the Moon. The instrument also had placed the planets in a different perspective. The phases of Mercury and Venus, as revealed by the telescope, could be explained only if these planets, like the Earth, revolved around the Sun. Jupiter had satellites of which the periods could be measured. And in the Milky Way a myriad of stars had been discovered – stars whose existence had already been suspected by Democritus, but which he had never been able to see.

Even on the very last pages of the book, in the “addenda” added after the proof sheets had been printed, Ouseel’s final remark is about new discoveries, just received. With a telescope made by Giuseppe Campani in Rome, the Italian-French astronomer Giovanni Domenico Cassini had discovered a large and permanent spot on Jupiter’s surface, which proved that the planet rotated around its axis in an estimated time of ten hours. With his closing remark Ouseel underpinned the fact that in astronomy there was still much to be discovered: “In the same way other news will certainly follow”.77

Further contact with Hevelius

In Gellius’ \textit{Noctes Atticae} Ouseel emphatically referred to his correspondence with Johannes Hevelius, his “amicum plurimus”.78 From an astronomical point of view, however, this correspondence – fifteen letters, of which nine are by Ouseel – is hardly interesting.79 After the discussion in the first letters on the construc-

75 Gellius, \textit{Noctes Atticae} (n. 60), p. 744.
76 Ibidem, p. 910.
77 “Eodem modo novibus Lunulam quandam, &c”. Gellius, \textit{Noctes Atticae} (n. 60), add., page ii.
78 Gellius, \textit{Noctes Atticae} (n. 60), add., page ii.
79 The Hevelius correspondence is preserved in the \textit{Observatoire de Paris}, having been bought in 1727 in Danzig from his heirs by the French astronomer Joseph-Nicolas de l’Isle. The letters from Jacob Oiselius are numbered 673 (15 May 1661); 755 (14 Nov. 1661); 993 (29 July 1662); 994 (1 May 1665); 1006 (30 Sept. 1665); 1083 (14 Dec. 1665); 1128 (4 June 1666); and 1286 (undated, summer 1666). A letter, dated 20 June 1666, was stolen in the early nineteenth century by the notorious manuscript thief Guglielmo Libri (1803–1869). It is still missing. Hevelius’ answers are numbered 672 (16 July 1661); 756 (15 June 1662); 995 (5 June 1665); 1067 (28 Nov. 1665); 1084 (29 Dec. 1665) and 1129 (30 June 1666). A contemporary copy of the Hevelius correspondence, made by his secretary, was sold in the eighteenth century to the French astronomer Louis Godin. From his
tion of telescopes and Ouseel’s own practical work on the grinding of lenses, the Ouseel-Hevelius correspondence contains mostly trivial discussion of commonplace subjects. About Ouseel himself we learn, for instance, that for most of his time he was engaged in the study of law and history, and that he intended to learn some mathematics. For the rest he thanked Hevelius for the receipt of copies of his publications, such as *Mercurius in Sole Visus* (1662), and the *Pro
dromus Cometicus* (1665), a work on the comet of 1664, or he exchanged news about publications printed in the Netherlands, like Huygens’ Dutch tract on the finding of longitude, or about Stanislaus Lubieniecky’s *Theatrum Cometicum*, an *opus magnum* on comets which was being typeset at an Amsterdam printing press in 1666.

In the beginning Hevelius was quite optimistic about his new correspondent: “I believe that our aims are the same”, he wrote in 1661, but very soon Hevelius also restricted himself to commonplace discussions: in 1661, for instance, he reported about a visit to his observatory by Steno Bielken, a dignitary of the Swedish king, and in 1666 he referred to his contact with Tito Livio Burattini, the Italian prefect of the Polish king, with whom he was working on very large telescopes. But about Hevelius’ fierce controversy on the trajectory of comets with the French astronomer Adrien Auzout, which for the largest part coincided with the Ouseel correspondence, we hear nothing worth mentioning. Only news about new publica-

80 Oiselius to Hevelius, 15 May 1661 (OdP, Hevelius correspondence, letter no. 673).
81 Oiselius to Hevelius, 29 July 1662 & 5 June 1665 (OdP, Hevelius correspondence, letters no. 993 & 995). The other copies were: Johannis Hevelii, *Mercurius in sole visus* (Gedani [Danzig] 1662) and idem, *Pro
dromus cometicus: quo historia cometae anno 1664 exorti [...] complectens* (Gedani [Danzig] 1665).
82 Oiselius to Hevelius, 1 May 1665 & 30 September 1665 (OdP, Hevelius correspondence, letters no. 994 & 1066). Huygens’ publication concerned the booklet in the vernacular: *Kort Onderwys aengaende het gebreuc
der Horologien tot het vinden van Oost en West* (n.pl. [The Hague], 1665).
83 Oiselius to Hevelius, 14 December 1665 (OdP, Hevelius correspondence, letter no. 1083). The book was finished only in 1668: Stanisław Lubieniecki, *Theatrum Cometicum* (Amsterdam 1668).
84 Hevelius to Oiselius, 16 July 1661 and 30 June 1666 (OdP, Hevelius correspondence, letters no. 672 & 1129). About the inventor, architect, Egyptologist, scientist, instrument maker, traveller, engineer and nobleman Tito Livio Burattini (1617–1681), who assisted Hevelius with the construction of his largest telescope, see G. Monaco, “Alcune considerazioni sul «Maximus tubus» di Heve
85 About this controversy, in which the Royal Society of London played a decisive role, see at length: Steven Shapin, *A Social History of Truth. Civility and Science in Seventeenth-Century Eng*
tions on comets was exchanged, and in this process Ouseel promised Hevelius to send him anything that Christiaan Huygens might publish on the trajectory of the recent comet.

This remark evidently gave the Danzig astronomer the impression that Ouseel was on speaking terms with the famous Dutch scholar. In several of his next letters, Hevelius asked Ouseel to convey his greetings to Huygens, as well as his fellow citizen in The Hague, Isaac Vossius. However, as far as can be ascertained, there is no clue that Huygens or Vossius had any contact with – or even knew – Jacob Ouseel. We can be quite certain, though, about the greetings destined for a third person, called “Pelsius”. This must have been a member of the well-known Pels Family, probably Philippus Pels, envoy of the Dutch Republic to Poland, who often stayed in The Hague, but who officially resided in Danzig. According to Mensinga’s eulogy, Ouseel was friends with Pels. His relative, the Danzig-born Marcus Pels, would become Ouseel’s colleague as a professor of history at Groningen University shortly after he had accompanied Jacob on a trip to Danzig. Ouseel made this trip in 1672, perhaps in this way escaping the siege of Groningen. He had been away from Danzig for a period of 28 years.

His main goal must have been a family visit, for his younger brother and his two sisters were still living there. But – according to Mensinga – during this stay Ouseel regularly visited Hevelius, discussing with him several optical and astronomical questions. The Hevelius correspondence, however, shows no sign of any contact after 1666, probably an indication of Ouseel’s withdrawal – after his appointment in Groningen as a professor in law – from his activities as an optical and astronomical enthusiast. It seems that during his Groningen sojourn Ouseel became mainly a book collector, digesting the astronomical novelties foremost from the literature in his library.

87 Marcus Pels had visited Hevelius before, as is evident from his preserved album amicorum, which has an entry by Hevelius, dated 18 July 1662. (Album amicorum M. Pels, fol. 71r, Koninklijke Bibliotheek, The Hague, shelfmark 79 J 63). See about this interesting album, to which many academic professors from the Netherlands contributed: W.J.S. Boeles, “Het album van den Groninger hoogleraar Marcus Pels, 1662–1670”, Bijdragen tot de geschiedenis en oudheidkunde, inzonderheid van de Provincie Groningen 7 (1870), pp. 140–152. In 1688 he left his chair, to become a Groningen senator. That same year Mensinga dedicated his Elegia de Bibliotheca Oiseliana (n. 8) to Marcus Pels, remarking inter alia that Pels promoted the interests of Ouseel’s heirs.

88 Cf. Mensinga, Oratio funebris (n. 4), p. 64. The year of Ouseel’s return to Danzig is not mentioned, but 28 added to 1644 is 1672.

89 Mensinga, Oratio funebris (n. 4), p. 65.
Groningen: Ouseel’s professorial career

In the summer of 1667 Ouseel was appointed professor in constitutional and international law at Groningen University. Ouseel probably owed his appointment to his edition and commentaries of Gellius’ *Noctes Atticae*, which for the most part was a book on ancient Roman law. At the time the Thysius-Ouseel edition was indeed reviewed very favourably. In Groningen, he became part of a new professorial triumvirate, for his appointment coincided with those of Gerhardus Feltman, who also received a professorship in law, and with Gerhardus Lammers, who was appointed professor in ethics, philosophy and medicine. In conjunction with the appointment the previous year of the anti-Cartesian Johannes Bertling to the chair of logic and mathematics (changed in 1669 into “philosophia practica”), this meant that four out of ten Groningen professors had been replaced in a short time.

It would be nice to learn more about Ouseel in his new intellectual habitat, especially whether he continued to pursue in any way his former optical and astronomical interests. Did he influence any of his colleagues in this? Many of them were anti-Cartesians, whereas Ouseel’s telescope making had started after reading Descartes’ *Discours de la Méthode*. Was this empirical aspect of Descartes’ work still regarded as Cartesian in Ouseel’s time? And what was the role in Groningen of Ouseel’s huge private library? Was it used only by Ouseel, or did others also have access to this rich source of information? Furthermore, which bookseller provided him with all these books? Unfortunately, hardly any sources have been found that could shed some light on these questions. From Ouseel’s time as a law professor, no travel journals or other written testimonies are available.

90 According to Jacob Christof Iselin, *Neu-vermehrtes historisch- und geographisches allgemeines Lexicon* 3 (Basel 1747), p. 760, favourable reviews were published in the *Bibliothèque Universelle* and *Bibliothèque Choisi*, vol. 18. [not consulted by the present author]. However, in his recent survey of the various Gellius editions, Leofranc Holford-Strevens says of the Thysius-Oiselius commentaries: “A few good conjectures are made; the notes are many and copious, but often derivative and seldom incisive”. L. Holford-Strevens, *Aulus Gellius: An Antonine Scholar and His Achievement* (Oxford 2005), p. 342.

seem to have been preserved. From Ouseel’s Groningen period, one bland letter to the Amsterdam Remonstrant minister and well-known historian Gerard Brandt has been preserved, thanking him for the loan of (probably) some books or documents.

Apart from the annotated sale catalogue, there is even no record of what happened at the sale of his library. We only know that the auction was held in May 1688 at Ouseel’s former house in Groningen and was organised by the Leiden bookseller Jacob Hack. Whether or not Dalancé’s remark about the extreme prices reached at the sale is true is difficult to confirm. The highest price at the Ouseel auction (202 guilders) was paid for the 27-volume Leiden edition of the *Maxima Bibliotheca Veterum Patrum* (1677), a compilation of Christian literature by more than two hundred writers from late antiquity and the Middle Ages. The sciences ran far behind, with 26 guilders as the highest price in this category, paid for the 3-volume folio edition of the *Cursus Seu Mundus Mathematicus* by the French professor of mathematics Claude François Milliet De Chales (in which book for the first time the cinematographic idea of the moving slide for the projection lantern was introduced).

Only an elegiac poem by Ouseel’s former colleague Mensinga mourned for Groningen’s loss of such an impressive library. Like Ouseel, Mensinga was a bibliophile. During his time as a professor at the Duisburg Gymnasium, he had

92 Cf. http://www.egodocument.net/reisverslagen-1.html. We have not been able to consult Ouseel’s entry, dated 1669, in an *album amicorum* of the German student Hieronymus Felix Welser von Rasch (1648–1715) (see Stadtbibliothek Nürnberg, shelfmark Will III 529 a — Einband 265).

93 The “Apparaat van der Woude”, the depository in the Amsterdam University Library, listing the location of printed disputations of universities from the Dutch Republic in European libraries, only provides information on one printed disputatio by a student of Oiselius. See: Heinrich Günther von Thülemeyer (1642–1714), *Diatriba juridica inauguralis De nuptiarum Sacrilegio [...] Jacobus Oiselius [Præses], Henr. Gunterius Thülemarius [Respondent] (Groningae: Rembr. Huysman, 1681), 38 pp., 4°. This text was reprinted in 1694, when Thülemeyer had become a professor of law at Heidelberg University (copy in the Herzog August Bibliothek, in Wolfenbüttel). This text was not at our disposal. Van der Woude also refers to an incomplete bundle of student poetry, issued in November 1681 at the promotion of Jacob Jonghbloedt. Cf. *Musa, gratulans seu applausus poeticus ab amicis et fautoribus dictus nobilissimo et doctissimo juveni Jacobo Jonghbloedt, cum post examina et disputationem De compensationibus, promotore Jacobo Oiselio, juris utrisque doctor renunciaretur, ad diem [11] Nov. (Groningae: Rembr. Huysman, 1681), 30 pp. 4°; (missing) copy in the former Rijksarchief Groningen*.

94 Cf. n. 2.

95 The second highest price at the Ouseel auction was reached by the famous ten-volume *Biblia Regia Polyglotta* (Paris 1645), which was hammered off for 158 guilders. Third (with 150 guilders) was the nine-volume *Critici sacri* (London 1660), a monument of biblical scholarship comprising nearly 10,000 pages of commentaries by well over fifty sixteenth- and seventeenth-century scholars. Information courtesy of Arjan Dijkstra, who checked the prices in the annotated Buning catalogue (n. 8).

96 *Mensinga, Elegia de Bibliotheca Oiseliana* (n. 8).
compiled a catalogue of a largest part of the Duisburg library. But his own financial sources were far more limited than Ouseel’s. At the time of his death in 1699, Mensinga’s own library counted “only” 2300 book titles, then more-or-less the average number for a Groningen professor. It is no wonder that he frequently sought Ouseel’s company. Mensinga’s poem informs us not only that collecting books had been Ouseel’s major passion, but also that on some dark winter nights, he had shared with Ouseel the joy of using Ouseel’s self-ground telescopes for charting the Moon and the stars. Moreover, with Ouseel’s microscopes Mensinga also had looked at the fibres of insects and at the moles on his own skin, which joyful moments he remembered as being the best of his life. It is not known where Ouseel’s telescopes and microscopes have gone. As Mensinga already predicted in 1688, from Ouseel’s collection of books and instruments there remained only a short list: a faint shadow of what was once there.

With regard to Ouseel’s professorial work it further is said that in his Groningen period he had worked much on Grotius’ De Jure Belli ac Pacis, the famous book on international law that he had earlier used for his own academic teaching. Ouseel’s sudden death (a result of hydropsy) prevented the publication of what he may have wished to see as his juridical legacy. However, in this respect it seems plausible that Ouseel was saved by the bell. The only new book that he produced in his Groningen period was, again, a dubious one. In 1677 his Thesaurus selectorum numismatum antiquorum was published by an Amsterdam printing press (Fig. 6). This Thesaurus offered a systematic arrangement, in which illustrations of Roman coins sketched a picture of ancient Roman socie-

97 Johannes Mensinga, Catalogus librorum Bibliothecae Goorianaec usui Academiae Electoralis Duisburgo-Clivenis dicatae (Duisburg 1668). No copy seems to have been preserved.
99 Mensinga, Elegia de Bibliotheca Oiseliana (n. 8): “Aut si quid superest, nihil est nomen umbra, nomenaque haec index parvus & unas habet”.
100 Jacob Christof Iselin, Neu-vermehrtes historisch- und geographisches allgemeines Lexicon (Basel 1747), p. 760.
101 We do not count here the unaltered reprint of Ouseel’s edition of Minucius Felix, Octavitus (Leiden: Hack, 1672).
102 Jacob Oiselius, Thesaurus selectorum numismatum antiquorum. Quo, Praeter Imagines et Seriem Imperatorum Romanorum a C. Jul. Caesaris ad Constantium Magnum usque, Quicquid fere Monimentorum ex Romana Antiquitate in Nummis Veteribus restat, reconditum est. Cum singulorum succincta Descriptione et accurata Enarratione, (Amsterdam: Hendrik & Dirk Boom, 1677). With an allegorical frontispiece by Gerard Lairesse, engraved on copper by Chr. Hagen. 118 numbered copperplates, 114 of which depict numerous impressions of coins; the last four are pictorial, allegorical, schematic, or technical. The Thesaurus, which was sold in Paris by the “veuve de Varennes”, was favourably reviewed in the Journal des Sçavans 7 (1680), pp. 77–79.
However, Ouseel had reverted to an old habit. As Nicéron already noted in 1741, Ouseel’s quarto book on Roman coins was for the greater part a Latin adaptation of a Dutch book on the same subject, written by Joachim Oudaen. Both books even used the same 118 engraved plates. However, as before, only Ouseel’s name was on the title page.

Figure 6. Engraved frontispiece from the *Thesaurus selectorum numismatum antiquorum* (1677).

The *Thesaurus*’s reader searches in vain for any mention of the first Dutch author! Nicéron suggested – and he was probably right – that the Amsterdam publishers of the *Thesaurus*, the brothers Hendrik and Dirk Boom, had bought the copper plates, for which they sought a new, more internationally oriented public. For them, Ouseel was a convenient candidate to compose an accompanying text, which he drew largely from the Dutch original.\(^{105}\)

Conclusion

In this paper I have investigated the life and scholarly interests of Jacob Ouseel, also known by his learned name “Oiselius”. Educated as a philologist and a lawyer, his optical and astronomical interests seem at first sight unexpected, and his grinding of lenses and construction of telescopes may appear even more remarkable. However, looking more closely at the time in which Ouseel lived, a period in which there still was a close relationship between the “old” humanist, philological word of learning and the emerging new philosophy of the natural sciences, our initial surprise fades away. Ouseel, although far from being the epitome of seventeenth-century scholarship, was in his interests still typical of a much broader movement in seventeenth-century Dutch society. In the middle of this century many Dutch intellectuals were fascinated by the perspective on nature presented by the new optical instruments that had emerged in the first half of the century. The quest for truth, on which Descartes had embarked, was followed by many others. The story of Ouseel’s life provides us a glimpse of the way in which he found his own way in this emerging new practice of scholarship, where philological learning, mathematical reasoning and practical craftsmanship went hand in hand.\(^{106}\) It was a time when the general humanist ideal of the *homo universalis* was still alive. Ouseel’s effort to collect as many books as he could obtain, without really specializing in a particular subject, harmonizes perfectly with such a general scholarly attitude. We have seen that (in our eyes) Ouseel’s standards for scholarly citation were far from impeccable. But in judging him we must bear in mind that it was a time in which scholarly journals and review procedures had yet to be invented. There was no well-defined measure for scholarly behaviour. The lack of any scholarly journal is also why Ouseel used his philological and editorial work as a vehicle to participate in contemporary scientific discussion. In the use of this means of publication Ouseel was far from alone. In 1665,\(^{106}\)

\(^{106}\) See on this aspect more elaborate, Jorink and Van Miert, *The Challenger. Isaac Vossius (1618–1689) and the European World of Learning* (n. 44).
his contemporary, the Zeeland minister Johannes de Mey, published a commentary on the meaning of comets as an appendix to a book devoted solely to insects.\(^\text{107}\) That a book was on the printing press was enough justification to permit comment on a topical subject. In itself this is a nice demonstration of the way in which at the time all sorts of scholarly work were interconnected. Hence, as historians of science we must be prepared to look for the traces of scientific debates in all sorts of literature.

As far as Ouseel himself is concerned, in the eighteenth century it was Nicéron who most memorably caught his character, writing, "He had some erudition, but a proclivity towards plagiarism, for almost all of his works are no more than an extract of those of others, who often are not mentioned, in order to look original".\(^\text{108}\) Although on account of this inclination towards plagiarism, Ouseel, in our eyes, indeed can be considered a dubious scholar, Nicéron’s picture deserves some adjustment. Ouseel ought to be remembered, not only for his lack of acknowledgement of his sources or for his impressive collection of books and instruments.\(^\text{109}\) He also deserves some credit for his outspoken conviction that telescopic observations provide convincing information on the physical nature of the universe.

\(^{108}\) “Il avoit quelque érudition; mais c’étoit un insigne plagiaire dont presque tous ses ouvrages ne sont qu’une dépouille de ceux des autres, que souvent il n’a point nommés pour paroitre d’avantage original” – see Nicéron, *Mémoires* (n. 4), p. 387.

\(^{109}\) Besides the books and optical instruments, Ouseel had in his library also a collection of seven globes, made by the Amsterdam cartographers Willem Jansz Blaeu and Johannes Jansonius; a hand-held quadrant by the Middelburg astronomer Philippus Lansbergen (made in 1620 by the engraver Frans Schillemans) and a silver planisphere (a set of discs that could be turned to indicate the motions of the planets), made in the 1620s by Kepler’s son-in-law Jacob Bartsch.
Appendix

Optical instruments, as listed in Ouseel’s auction sale catalogue (1688)110

1. A large telescope of 30 feet, with a diameter at the base of 4 inches \hspace{1cm} 17 / –
2. A telescope of 16 feet, with a diameter at the base of 4 inches \hspace{1cm} 6 / 10
3. A telescope of 10 feet, with a diameter at the base of 3 inches \hspace{1cm} 9 / –
4. A telescope of 5 ½ feet, with a diameter of 2 and a bit inches \hspace{1cm} 8 / 15
5. A telescope of 6 feet, with a diameter of 2 ¼ inches \hspace{1cm} 8 / 10
6. A telescope of 4 feet, with a diameter at the base of 3 inches \hspace{1cm} 4 / 15
7. A telescope tube of 5 feet, with a diameter at the base of 3 inches, in two parts and a quadrant, with a smaller tail inserted in the tube \hspace{1cm} 6 / 10
8. A telescope with a tube of 5 feet, with a diameter at the base of 2 ½ inches, in two parts with a narrow tail \hspace{1cm} 2 / 5
9. A telescope of 4 feet length \hspace{1cm} 1 / 6
10. Optical tube 4 ½ feet long, the objects are exhibited in an inverted way \hspace{1cm} 6 / 10
11. Optical tube of 3 feet length \hspace{1cm} 2 / 5
12. Optical tube 10 feet long, the objects are exhibited in an inverted way \hspace{1cm} 1 / 16
13. Optical tube of about 4 feet length \hspace{1cm} 5 / 5
14. Optical tube of almost the same length \hspace{1cm} 3 / 8
15. Optical tube of 2 feet length \hspace{1cm} 1 / 12
16. Other tubes in several fragments \hspace{1cm} 6 / 5
17. Microscope three things of the same form \hspace{1cm} 3 / 4
18. Microscope of another kind \hspace{1cm} 3 / 10
19. A Nuremberg microscope covered with leather \hspace{1cm} 8 / 15
20. Microscopes of ivory, with many things not sold
21. Mathematical mirror which increases the objects immensely \hspace{1cm} 3 / –
22. Objective glass, with a diameter of 3 ½ inches, for a telescope of 10 feet \hspace{1cm} 1 / 10
23. Objective glass, with a diameter of 3 inches, for a telescope of 10 feet \hspace{1cm} 1 / 4
24. Objective glass, with similar diameter and distance \hspace{1cm} 0 / 12
25. Another objective glass, with a diameter of almost 3 inches, for a telescope of 10 feet \hspace{1cm} 0 / 10
26. Objective glass, with a diameter of 2 ¼ inches, for a telescope of 6 feet \hspace{1cm} 0 / 11
27. Objective glass, with a diameter of 2 ¼ inches, for a telescope of 3 or 4 feet \hspace{1cm} 0 / 15
28. Two objective glasses, with a diameter of 1¼ inches, for a telescope of 5 feet \hspace{1cm} 0 / 10
29. One-eyed spyglass, with a diameter of 2 ¾ inches \hspace{1cm} 2 / 5

110 Translated from the Latin. Prices – the notation “xx/yy” means “xx guilders and yy stuivers” – are taken from the annotated catalogue by T. Buining in the Tresoar, Leeuwarden (n. 8). Information courtesy of Arjen Dijkstra.
30. One-eyed spyglass, with a diameter of 2 ¼ inches 2 / 4
31. Glass for a spyglass, with a diameter of 3 inches 2 / 4
32. A burning glass 2 / 6
33. A Prism 1 / 18
34. Tube to exhibit small objects 2 / 6
35/36. Disk with a not completely concave area, for the polishing of glasses, with a diameter of 8 inches.
 A similar disk, with the same area, for smaller cavities, with a diameter of 8 inches 4 / 5
37/38. Disk with a smaller area, but quite concave. Screws of different magnitudes 1 / 10
39. Two plates of iron, excavated in various magnitudes, with different iron pins related to these, for the polishing of microscopes 0 / 5
40. Several instruments intended for the polishing of lenses 0 / 6
41. Various powders, also for the polishing of lenses
42. A great supply of eye glasses and other glasses, of several magnitudes
43. A great supply of raw glass material

Acknowledgements: I am indebted to Albert Van Helden, Arjen Dijkstra and Dirk van Miert for their erudite comments on an earlier version of this paper.

Author's Address: Dr. Huib Zuidervaart, P.O Box 90.754, 2509 LT, Den Haag, Niederlande; e-mail: huib.zuidervaart@huygens.knaw.nl