Control of synaptic plasticity in deep cortical networks

Pieter R. Roelfsema1,2,3 and Anthony Holtmaat4

1Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences
2Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University
3Psychiatry Department, Academic Medical Center, Amsterdam, The Netherlands
4Department of Basic Neurosciences, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Correspondence to P.R.R.
\texttt{p.roelfsema@nin.knaw.nl}

Abstract
Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. Yet, many of the mechanisms that enable us to learn remain to be understood. One of greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we give an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity, and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.

Introduction
How does a neuron in the sensory or association cortex optimize the strength of its synapses to improve the performance of the entire brain network? In computational neuroscience, the task of determining the connections that matter for behaviour is known as the ‘credit assignment problem’1,2. For artificial neural networks, powerful
methods exist to solve this problem. However, how it is solved in the brain is an important but still open question.

Suppose that an animal recognizes a particular stimulus, selects a response and is then rewarded unexpectedly. Synapses in association and motor cortices should change, to promote the selection of the same action if the same stimulus reappears in the future. Furthermore, learning should sharpen representations of the stimulus in sensory cortices if slightly different stimuli require distinct responses.

In this Review, we discuss biologically plausible learning rules that may enable synapses to change in a manner that optimizes behavioural outcome. We focus on synaptic plasticity in sensory cortices, and review frameworks in which learning relies on modifiers of synaptic plasticity. The first modifying factor is a feedback signal from the response-selection processing stage back to association and sensory cortices that informs neurons about the action that was selected. This feedback signal leads to the ‘tagging’ of synapses and gates their plasticity. The second modifying factor is the release of neuromodulators, which, among other functions, inform synapses about reward prediction errors; that is, whether the outcome of an action was better or worse than expected. We discuss how the combination of feedback connections and neuromodulators permit new learning rules that promote future actions that lead to more reward, and enable ‘deep learning’ in the brain.

Changing the strength of synapses

In 1949, Donald O. Hebb proposed that the change in the strength of a synapse depends on presynaptic and postsynaptic activity. He phrased this hypothesis as follows: “when an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased”. Hebb’s rule can be formalized as follows:

$$\Delta w_{i,j} = \beta \cdot f_i(a_i) \cdot f_j(a_j)$$

(1)

$\Delta w_{i,j}$ is the change in the strength of the connection between neurons i and j, β is the learning rate parameter and determines the magnitude of the change, and $f_i(a_i)$ and $f_j(a_j)$ are functions that depend on presynaptic activity (a_i) and postsynaptic activity (a_j).

A wealth of evidence supports Hebb’s rule, but researchers realize that the rule is incomplete if the aim is to select appropriate actions, because the rule is ignorant about the usefulness of the network’s output. In animals, rewards and punishments influence learning such that behaviours that lead to reward are reinforced and behaviours that result in aversive outcomes are inhibited.
The influence of theories of reinforcement learning [G] increased tremendously when it became clear that neuromodulatory systems, such as the dopaminergic system \(^7\), code for unexpected reward. In reinforcement learning theory, unexpected rewards and punishments give rise to reward-prediction errors [G] (RPEs)\(^1,8\). The RPE is positive if the animal receives more reward than expected and negative if the outcome is disappointing. Reinforcement learning theories have proposed that the coincident activity of presynaptic and postsynaptic neurons induces eligibility traces [G] at synapses that determine whether the synapse will undergo plasticity in case of an RPE. Eligibility traces correspond to synaptic tags [G], which are biochemical markers at synapses that are induced by the coincident pre- and postsynaptic activity but can be maintained for some time after the neurons stopped firing\(^1,9–13\). Studies have started to elucidate the molecular identity of these synaptic tags\(^14,15\) but many discoveries remain to be made.

A positive RPE, for example signalled by the dopamine released from the substantia nigra and ventral tegmental area, is a well-suited signal to strengthen these tagged synapses, because it increases the probability that rewarded actions will be taken again in the future. By contrast, a negative RPE should decrease the strength of tagged synapses. Neuromodulatory systems, including the dopaminergic system, project rather diffusively to the cortex and subcortical structures, suggesting that their signals are conferred globally. The introduction of the RPE as a factor to the Hebbian rule results in the following plasticity rule\(^11,16–19\):

\[
\Delta w_{i,j} = \beta \cdot f_i(a_i) \cdot f_j(a_j) \cdot RPE
\]

(2)

Here, we refer to the influence of neuromodulatory signals as ‘plasticity-steering’ effects.

Another factor that determines learning is selective attention. This is intuitive — we learn more if we pay attention\(^20–22\). A formal way to test the role of attention in learning uses the redundant–relevant cue paradigm\(^20,21,23\), in which subjects learn through trial-and-error to map stimuli onto responses. In each trial, participants see multiple stimuli that are all informative about the desired response, such that much of the information is redundant, but the participants pay attention to only one of the stimuli, and learn only about the attended stimuli and not the unattended ones. This is remarkable, because unattended stimuli are paired with the same behavioural responses and are associated with the same RPEs as the attended stimuli. Only under special conditions can perceptual learning occur without attention\(^24\) — for example, if stimuli are very weak. These weak stimuli appear to escape from the attentional control mechanisms that would otherwise suppress the plasticity of non-attended items\(^25\).

The attentional signals that gate learning could originate from brain areas in the motor and frontal cortex that select behavioural responses. Action selection is
invariably associated with an attention shift that, through feedback connections, reaches the neurons in sensory cortices that code for the features that caused the action. Introducing attention signals into the learning rule gives

$$\Delta w_{i,j} = \beta \cdot f_i(a_i) \cdot f_j(a_j) \cdot RPE \cdot FB_j$$

where FB_j is the feedback from higher brain regions that gate the plasticity of synapses onto neuron j. We will refer to the effect of FB_j as ‘gating’ because it varies between zero (not attended) and one (fully attended) and is always positive (unlike the ‘steering’ RPE signal, which can change sign).

Figure 1 illustrates the main ideas underlying this learning rule. Stimulus information first propagates from sensory cortex to motor cortex during a feedforward processing phase (Fig. 1). The motor cortex selects an action and uses feedback connections to highlight representations in lower-level cortices that provided input for the action. The feedback connections induce synaptic tags (also known as eligibility traces) that gate plasticity. The placement of tags and their strength depends on presynaptic and postsynaptic activity $f_i(a_i)$ and $f_j(a_j)$ and on the feedback FB_j. In this framework, different actions would activate different feedback connections and cause distinct patterns of synaptic tags, ensuring that the credit (or blame) is assigned to those synapses that mattered for the stimulus–response mapping. The tags should persist until the RPE signal becomes available. Neuromodulators signalling the computed RPE interact selectively with tagged synapses to modify their strength.

Learning rule (3) permits the training of networks with many layers between the sensory and motor cortices. If the strength of the feedback connections is proportional to that of the feedforward connections, a property that can emerge during learning, is equivalent to the so-called error-backpropagation rule that is used to train networks with many layers. Such deep artificial neural networks have achieved excellent and sometimes even superhuman performance in image recognition tasks and computer games. Thus, although the error-backpropagation rule was previously thought to be biologically unrealistic, new insights suggest that learning rule (3) can be implemented by the brain to enable forms of deep learning (Box 1).

Below, we review the corticocortical and corticosubcortical connections that may enable learning rule (3). We then discuss how learning changes the representation of stimuli in sensory and association cortices and review mechanisms for controlling plasticity.

Sensory and association cortex
The cortex contains a vast network of circuits for local and long-range interactions (Fig. 2a,b). Cortical areas are composed of columns, and the neuronal subtypes and local connectivity patterns in different areas are similar35,36. Cortical areas can be arranged in a hierarchical manner, in which lower-order cortical regions (Level I in Fig. 2b) feed information forward to higher-order areas (Level II in Fig. 2b), and higher-order regions can feed information back to lower-order cortex37. When going up in the hierarchy, the neuronal receptive-field properties become more complex37,38. The principles of cortical organization and connectivity have been excellently reviewed elsewhere39–46. Here, we summarize key aspects of cortical organization that relate to the feedforward and feedback streams and are relevant to understanding plasticity rules in hierarchical networks.

Feedforward and feedback connections

There are laminar differences as to where feedforward and feedback inputs originate and terminate37,43 (Fig. 2). Anatomical and neurophysiological studies have revealed that sensory inputs relayed by the thalamus initially activate neurons in L4 and L6 of sensory cortices in the primate47–50, with inputs in L3 and L5 in rodents as well51,52. This input then rapidly propagates to the other layers so that neurons in all layers are activated by the sensory input. There is a feedback system within the cortical column, where strong feedback originates from L6 and predominantly suppresses activity53,54 by activating inhibitory neurons55.

Sensory areas also receive feedback connections from higher cortical areas, which mostly provide input to superficial layers (L1–3) and parts of L5 (Fig 2). Hence, whereas interareal feedforward inputs target L4, interareal feedback inputs target the apical tufts of L2/3 and L5 pyramidal cells56,57, as well as inhibitory58 and disinhibitory microcircuits59,60. These features may have important consequences for the role of feedback connections in synaptic plasticity (discussed later).

Cortical areas also interact with one another indirectly via the thalamus. Cortical neurons in L5 that project to the brainstem send collaterals to higher-order thalamic matrix nuclei (as opposed to the first-order, sensory-specific core nuclei), which, in turn, provide feedforward input to L4 in higher-order cortical areas39,61–63. Furthermore, projections from higher-order thalamic nuclei also feed information back to lower-order cortical areas (Fig. 2)57,64, where they target L1 and L561,65–67. These feedforward and feedback routes through the thalamus permit the integration of sensory information from the periphery68–71 with information from the association and motor cortices39,64,72,73.

Pharmacological studies have demonstrated that feedforward inputs drive postsynaptic activity by activating AMPA receptors (AMPARs). By contrast, the synapses of many feedback connections modulate firing rates mainly via NMDA
receptors (NMDARs)74,75 and metabotropic glutamate receptors39,76. Consistent with this, microstimulation of higher-order thalamic nuclei in mice induces robust NMDAR mediated responses in cortical pyramidal neurons77. In line with a driving effect of feedforward connections, microstimulation in the primary visual cortex (area V1) of monkeys activates neurons in higher area V4. By contrast, V4 microstimulation influences the V1 activity elicited by a visual stimulus, but has little influence in the absence of visual input, in accordance with a modulatory feedback effect78.

Neuromodulation

All cortical layers receive neuromodulatory input from several deep brain nuclei. These systems include the dopaminergic system of the ventral tegmental area, the serotonergic dorsal and medial raphe nuclei, noradrenergic projections from the locus coeruleus and cholinergic afferents from the basal forebrain (Fig. 2). These modulatory systems provide information about the state of arousal and rewards and punishments and may influence synaptic transmission79 and cortical states80,81. In addition, they may play a part in learning by steering synaptic plasticity82–84 (discussed below).

Cortical plasticity and learning

Learning changes the response properties of neurons in many areas of the cerebral cortex85 and subcortical structures86–88. Here we provide examples of studies on the effects of learning on neuronal tuning to stimuli in the visual89–91 and association cortices92, demonstrating that neurons become tuned to feature variations that matter for a task.

In one study, Schoups \textit{et al.}89 trained monkeys to perform an orientation discrimination task. The animals judged whether the orientation of a grating stimulus was rotated clockwise or anti-clockwise relative to a reference orientation (Fig. 3a). At the beginning of training, the monkeys needed an orientation difference of 10 degrees or more to be able to perform the task reliably. However, after months of training, they performed the task with orientation differences as small as 1 degree. As a result of training, V1 neurons became better in discriminating between small difference in orientation, an effect that was most pronounced for neurons with a preferred orientation that differed only slightly (for example, by about 15 degrees) from the trained orientation (Fig. 3b). For these neurons, the trained orientation fell on the highest-gradient part of the tuning curve, and training increased the gradient of that part (Fig. 3c). Exposure to task-irrelevant stimuli, presented at another location during task performance, did not cause comparable changes in neuronal tuning. Thus, the mere presentation of stimuli did not induce plasticity.
Freedman and Assad\(^2\) reported related effects in the association cortex. They recorded the activity of neurons in area LIP of the parietal cortex of monkeys trained to categorize motion stimuli. The monkeys saw stimuli with dots moving in one of twelve directions that were divided into two arbitrary categories (Fig. 3d) on either side of a ‘category boundary’. On each trial, the monkeys first saw a sample stimulus and remembered its category so that they could report whether a later stimulus belonged to the same or the other category. Figure 3e illustrates the tuning of an LIP neuron that responded more strongly to motion in all motion directions of one category (blue in Fig. 3d) than any of the directions of the other category (red in Fig. 3d). A comparison of responses to stimuli with adjacent motion directions revealed that the largest differences in firing rates were observed for pairs stimuli straddling the category boundary (Fig. 3f). Hence, learning to categorize stimuli causes increases in the sensitivity of neurons to category boundaries. These results raise a number of important questions.

The first question is about the connections that change during learning. In the orientation discrimination task, the sharpening of V1 tuning curves occurred in L2–3 and L5–6 but not in L4, the input layer of cortex. This might suggest that connections from L4 to the other layers undergo plasticity. However, other studies have demonstrated plasticity in the connectivity between sensory cortices\(^93\) and between the sensory cortex and subcortical structures\(^86,88,94\). In one study\(^86\), rats trained to distinguish between auditory tones with different pitches showed strengthened connections between the primary auditory cortex and the striatum. Another study in mice revealed that the connections between the visual cortex and the accessory optic system, which controls the gain of the optokinetic reflex\([G]\), undergo plasticity after a lesion of the vestibulum\(^88\). Hence, plasticity of the connections within the cortical columns as observed by Schoups et al. (Fig. 3a-c) is complemented by plasticity of other connection types. It seems likely that the precise contributions of plasticity of these different connection types to learning depend on the task and they remain to be fully understood.

A second question is: how do neurons in sensory and association areas become tuned to a category boundary that can only be inferred by observing a reward structure — that is, contingent on the stimuli and choices across trials? A possible solution is that feedback connections from the response-selection stage assign credit (or blame) by tagging those synapses in sensory and association cortices that were responsible for action selection (that is, placing eligibility traces; Fig. 1). If an action is rewarded, the tagged connections are strengthened by a change in neuromodulator concentration that promotes synaptic potentiation (Fig. 1) to increase the probability that the same response reoccurs in the future. If the animal makes a wrong choice, feedback connections from neurons coding for this erroneous action tag another set of synapses, which decrease in strength owing to a change in the neuromodulator
concentrations coupled to the lack of reward (Fig. 1). Such an interplay between feedback connections and neuromodulators (formalized by equation (3)) can explain the emergence of category selectivity in sensory and association cortices28,32,95 (Box 1).

A third question relates to the identity of the synaptic tags and their interaction with neuromodulatory systems. Usually there are delays between the activity in sensorimotor pathways and the moment when the organism can evaluate whether the outcome of a response was better or worse than expected11. Synaptic tags would have to persist long enough to bridge the delay. Below, we review initial insights into the molecular identity and persistence of tags and how they might interact with neuromodulatory systems.

Gating and steering plasticity

Now, we discuss the factors that influence plasticity, distinguishing between those that gate plasticity and those that steer plasticity. We propose that feedback signals from the response-selection stage gate plasticity by placing tags on the synapses that promoted selection of an action and that therefore should be held ‘responsible’ for the action outcome. By contrast, neuromodulators are proposed to steer plasticity by conveying the RPE, which is either positive and promotes synaptic potentiation, or negative, leading to synaptic depression19.

Gating of synaptic plasticity

Evidence for strong relations among action selection, selective attention and the influence of feedback connections on sensory cortices comes from psychology as well as neurophysiology. Psychological studies have demonstrated that every visually guided movement of the eye or the arm is associated with a shift of visual attention to the target of the movement26. Furthermore, neurophysiological experiments in non-human primates have demonstrated that when an animal plans a saccade to a visual object, neuronal activity elicited by this object in the visual and motor cortices is enhanced over the activity elicited by non-selected stimuli27,96. These response enhancements in the visual cortex are the neural correlate of a shift of attention towards the target of the subsequent eye movement.

The curve-tracing task provides a good illustration of the coupling between action selection and attention (Fig. 4). In this task, monkeys (or humans97) direct their gaze to a fixation point and a stimulus appears with a number of curves. One of the curves is a target curve and connects the fixation point to a larger circle, which is the target of a saccade. The monkeys must mentally trace the target curve to locate the saccade target in order to obtain a reward and must ignore other curves, which are distractors. The appearance of the curves activates neurons in many cortical areas, including V1 and the frontal eye fields [G]. The initial part of the response in each of
these regions is dominated by feedforward processing, and does not distinguish between target and distractor curves (Fig. 4c). After this phase, the animal mentally traces the target curve, while maintaining gaze at the fixation point. Now, feedback connections and horizontal connections help enhancing the representation of the target curve in the visual and frontal cortex96 (Fig. 4b). The relative increase in neuronal activity caused by this mental tracing corresponds to the spreading of attention across the target curve98. If the monkey mistakenly selects the distractor curve and makes the saccade to the circle at the end of the distractor curve, the representation of the distractor curve is enhanced in the visual cortex96,99,100 (as in Fig. 1). Hence, the attentional feedback signals from frontal cortex enhance the activity of activated circuits in the association and sensory cortices that are accountable for the selected eye movement. Thus, they may enable (‘gate’) the plasticity of those connections that should change if the action outcome is better or worse than expected.

Feedback pathways could tag synapses for plasticity via two routes: via corticocortical feedback connections and/or through the thalamus. Both routes target distal dendrites in the superficial layers and L5 (Fig. 2). In monkeys, selective attention increases the activity not only of neurons in the visual cortex101,102 but also in the pulvinar, a higher-order visual thalamic nucleus103 (equivalent to the lateral posterior thalamic nucleus in rodents). Inactivation of the pulvinar decreases visually driven cortical activity104, and impairs performance in tasks that demand attention shifts103–105. Furthermore, pulvinar lesions interfere with new learning106.

In support of the gating hypothesis, one study77 in mice demonstrated that activity in a higher-order thalamic nucleus indeed feeds back to sensory cortex to gate plasticity. The researchers recorded from the primary somatosensory cortex (S1) and investigated the plasticity of the connections that convey sensory information from the whiskers through the ventral posteromedial nucleus (VPm), the primary sensory thalamic nucleus. Repetitive stimulation of the whiskers induced long-term potentiation (LTP) in L2/3 pyramidal cells. Interestingly, LTP induction depended on activity in the posterior medial nucleus (POm), a cluster of higher-order nuclei in the somatosensory thalamus. Exogenously evoked POm neuron activity induced long-lasting (>150 ms), NMDAR-dependent plateau potentials, probably caused by calcium influx, in the distal dendrites of the L2/3 neurons in S1. Notably, LTP of the L2/3 pyramidal cell response to whisker stimulation only occurred if the feedforward input coincided with the L2/3 plateau potentials in S1; blocking POm activity with muscimol decreased the S1 plateau potentials and abolished S1 LTP. LTP could also be blocked by injection of NMDAR antagonists into S1, which also blocked calcium influx into the distal dendrites (Fig. 5). Thus, feedback-mediated NMDAR-dependent plateau potentials are apparently necessary for making synapses that are activated by the excitatory feedforward pathway eligible for plasticity.
neurons depend on other species.

It seems likely that the driven chemogenetic silencing of SST V1 plasticity the influx into the apical dendrites of L5 neurons. Interestingly, late-phase S1 activity and calcium influx into S1 dendrites predict the reporting of the sensory stimulus by the animal (by licking), in support of the idea that action selection in motor cortex causes upstream effects in sensory cortex (Fig. 5c). Moreover, pharmacological or optogenetic suppression of the late activity or of plateau potentials in S1 impairs the licking response, in particular for weak tactile stimuli.

It remains to be determined, however, whether the M1 feedback also gates plasticity in S1, as does feedback from the POm.

Gating of plasticity may also depend on disinhibitory circuits in the cortical column that involve VIP-positive interneurons. These VIP+ neurons receive input from multiple sources, including feedback from higher-order thalamic nuclei, and inhibit somatostatin (SST)-positive interneurons that, in turn, inhibit the activity of pyramidal neurons. SST+ neurons largely overlap with Martinotti cells, which inhibit activity in the distal dendrites of pyramidal neurons, near the synapses formed by feedback connections from higher-order thalamic nuclei.

When VIP+ neurons suppress the activity of SST+ neurons, they may thereby enable the influx of calcium into these distal dendrites and thus ‘switch on’ synaptic plasticity. Indeed, in mice, the optogenetic inhibition of SST+ neurons enhances V1 plasticity induced by the closure of one eye. Furthermore, the optogenetic or chemogenetic silencing of SST+ neurons as well as their deletion promotes learning-driven plasticity in M1.

It seems likely that the effects of feedback on plateau potentials, sensory perception and plasticity observed in S1 of mice generalize to other sensory modalities and other species. Synaptic plasticity in the mouse hippocampus was recently shown to depend on plateau potentials and to be sculpted by inhibition. In mouse V1, NMDAR-dependent calcium events in dendrites enhance the stimulus selectivity of neurons. Furthermore, in monkeys, feedback connections to V1 target the
superficial layers and L5 and activate NMDARs to increase the representation of stimuli that matter for behaviour74. The data reviewed above suggest that response selection elicits feedback signals that enable the plasticity of upstream synapses. This gating hypothesis provides possible mechanisms that may explain the psychological finding that animals learn what they attend. Although we focused on reinforcement learning, it is conceivable that attention and feedback connections have equivalent roles in forms of unsupervised learning [G], where behavioural outcomes are not crucial77,131–133. For example, the learning of abstract visual concepts such as birds or cars relies on similar interactions between lower visual brain regions coding for primitive features and higher areas coding for semantic categories. That is, during unsupervised learning, neurons in higher areas could feed back to gate the synaptic plasticity of relevant low-level feature representations.

Steering of synaptic plasticity

The RPE should steer plasticity; that is, it should determine whether the tagged synapses undergo potentiation or depression. A widely held hypothesis is that the RPE is signalled by released neuromodulators. We briefly review the possible influence of dopaminergic, cholinergic, serotonergic and noradrenergic projections on cortical plasticity, but we note that other neuromodulatory systems, such as histamine signalling134 and neuropeptide signalling84 may also have a role. In addition to their role in coding the RPE, neuromodulator levels may also signal other behavioral states, including novelty, surprise, arousal and emotional valence17,18. These factors may also influence plasticity through effects on the release of neuromodulators.

Dopamine. The ventral tegmental area is the main source of dopamine for the cortex. Many, but not all, dopamine neurons are active if an animal receives more reward than it expected135–137. Dopamine projections target subcortical structures, including the striatum, as well as the cortex, where the projections are densest in prefrontal and motor cortices and sparser in sensory areas. Dopaminergic signalling occurs through five metabotropic receptor subtypes, of which the D1 receptor (D1R) is the most abundant in the cortex. D1R ultimately activates protein kinase A (PKA), which is strongly implicated in long-term plasticity. Furthermore, dopamine may modulate synaptic release and the incorporation of AMPARs and NMDARs into the cell membrane79. Dopamine regulates synaptic plasticity in the striatum14, hippocampus17 and also in the auditory cortex, where the pairing of a particular tone with electrical stimulation of the ventral tegmental area causes an expansion of the cortical area representing the tone frequency138. Many dopamine neurons code for RPEs and are in a position to steer plasticity in structures containing dopamine.
receptors. Other neurons in the ventral tegmental area code for motivational signals besides the RPE and may thus also play a part in steering plasticity17,139.

Acetylcholine. Cholinergic signalling in the neocortex is thought to have an important role in the control of brain states, attention and learning. It is highly upregulated during wakefulness and with sustained attention80. Cholinergic projections from the basal forebrain are widely distributed in the cortex and show a complex topographical, modality-related organization140,141. The effects of acetylcholine in the cortex are mediated by metabotropic muscarinic receptors and ionotrophic nicotinic receptors. Nicotinic receptors are expressed presynaptically on some thalamocortical axons142 and postsynaptically on VIP+ interneurons that also express the ionotropic serotonin receptor114,143. Muscarinic receptors are expressed both presynaptically and postsynaptically by pyramidal cells, where they can have mixed effects80. Optogenetic activation of cholinergic projections in mice enhances visual responsiveness of neurons in V1 and improves performance in an orientation discrimination task144. Many cholinergic neurons respond to punishment, and a smaller number also respond to unexpected rewards, compatible with a role in RPE signalling145,146. Nevertheless, other behavioural factors, such as arousal level, could also influence plasticity because they are associated with changes in acetylcholine release. Electrical stimulation of cholinergic centres enhances plasticity in the visual cortex of mice and the auditory cortex of mice and rats147–151, whereas the depletion of acetylcholine suppresses synaptic plasticity in the auditory and somatosensory cortex of rats151,152. Accordingly, pharmacological blockers of cholinergic signalling, or the depletion of cholinergic fibres to the temporal lobe using toxins, impairs recognition memory and the learning of new sensory stimuli153,154 and lesions of the cholinergic nuclei impair spatial learning155. These results, taken together, indicate that cholinergic neurons could steer cortical plasticity.

Serotonin. The serotonergic system is thought to modulate sensory processing, cognition and emotional states, and to regulate innate behaviours such as food intake and reproduction156. Serotonergic projections to almost all regions of the forebrain originate from two rostral serotonergic clusters in the brainstem: the median and dorsal raphe nuclei (MRN and DRN)156. In the cortex, the effects of serotonin are highly diverse, and mediated by a vast repertoire of presynaptic and postsynaptic metabotropic and ionotrophic receptors83,157. Among other factors156, the activity of serotonergic neurons depends on the amount of reward or punishment that is anticipated and received158–163; however, the effects of reward-related serotonergic signalling in cortex have remained unclear. The activation of cortical serotonergic inputs facilitates the delivery of AMPARs to synapses82,83, and sharpens the whisker barrel map of rats during visual deprivation164. Thus, serotonin also affects cortical synaptic plasticity.
Noradrenaline. Noradrenergic signalling is associated with arousal and with the receipt of rewarding stimuli. The most important source of noradrenaline is the locus coeruleus, which projects widely to all other neuromodulatory centres, as well as to all regions and layers of the cortex. Activity of the locus coeruleus affects various cognitive and sensory processes. For example, increased activity of the locus coeruleus enhances sensory-evoked responses in the thalamus and cortex. Noradrenaline exerts its effects predominantly through adrenoreceptors, which influence synaptic plasticity. Furthermore, noradrenergic signaling has been shown to induce plasticity in the hippocampus, amygdala and neocortex of rodents, and to enhance contextual learning, fear conditioning and auditory perception.

Spike-timing-dependent plasticity. Theories about the implementation of reinforcement learning in the brain have proposed that the global release of the neuromodulators influences plasticity in order to determine whether selected actions will be taken again in the future. They can do so by modifying synapses (for example, by changing the surface expression of receptors or by changing the intrinsic properties of neurons). Several studies have examined the influence of different neuromodulators on spike-timing-dependent plasticity (STDP), wherein the increase or decrease of synaptic strength depends on the precise time interval between presynaptic and postsynaptic action potentials. These studies demonstrated that dopamine, acetylcholine, noradrenaline, serotonin, but also endocannabinoids, may increase or decrease the sensitivity of neurons to STDP paradigms, can modify the shape of the STDP function and can even determine whether synapses undergo potentiation or depression. Thus, substantial evidence indicates that neuromodulatory systems steer neuronal plasticity. However, the field has yet to reach a consensus about the relative importance of these neuromodulatory systems — alone or in their combination — and their precise roles in the control of plasticity.

Gating and steering together

The combination of corticocortical or thalamocortical feedback connections and neuromodulatory signals can ensure that the information necessary for the synaptic update becomes available locally, at the synapse undergoing plasticity (Box 1). This can be illustrated for an example reinforcement learning scenario (Fig. 6a). First, activity propagates from sensory cortex to motor cortex, and the selected motor programme provides feedback to earlier processing levels. Coincident activity of feedforward and feedback pathways specifically occurs in the cortical columns that will be held accountable (Fig. 6a). In these columns, corticocortical and thalamocortical feedback connections induce calcium events in pyramidal dendrites,
either through direct excitation or through indirect VIP⁺-neuron-mediated disinhibition. These events induce eligibility traces at the activated feedforward synapses — that is, biochemical modifications that enable their plasticity. One or a few seconds later, the action outcome is evaluated and an RPE computed, which then steers the plasticity. Eligible synapses are potentiated by neuromodulators if the RPE is positive (as shown in Fig. 6a), and weakened if the RPE is negative. The release of neuromodulators can be separated in time from the activation of the neurons, because the tags can persist in the absence of neuronal spiking14,174,175.

Indeed, the persistence of eligibility traces may be related to longer-term interactions between plasticity-inducing events that have been observed in the hippocampus and gave rise to the ‘synaptic tagging and capture hypothesis’15,176,177. According to this hypothesis, weak plasticity-inducing events induce synaptic tags that cause these synapses to undergo plasticity if stronger plasticity-inducing events occur at other synapses of the same neuron within hours. As such, the strong potentiation of the other synapses cause the production of plasticity-related proteins, which are captured by tagged synapses so that they too change their strength. The hypotheses that synaptic tags interact with plasticity-related proteins15,176 or with neuromodulators coding for the RPE11,32 are not mutually exclusive and occur at different time-scales: that is, seconds to bridge delays in reinforcement learning and hours for synaptic tagging and capture. Future research could aim to better characterize the processes that act on synaptic tags to control plasticity.

Although we focus above on the role of neuromodulatory inputs in steering plasticity, some studies indicate that neuromodulators may also participate in gating processes by altering neuronal excitability178 — for example, by altering presynaptic glutamate release179 or by activating disinhibitory circuits60,84,112,113,117,118. It is important to note, however, that the neuromodulatory projections are relatively diffuse, which implies that any gating function they have is likely to be less specific than that of corticocortical and thalamocortical feedback connections, which are better positioned to tag specific relevant synapses.

In line with the ideas presented above, a recent study documented the existence of synaptic tags that make synapses eligible for plasticity and that are influenced by the later release of neuromodulatory substances in the striatum14,175. Yagishita et al.14 activated a single spine of neurons in slices by uncaging glutamate, while causing the same cells to fire action potentials by injecting current. If dopamine was released within a time window of ~1 s after this event, the volume of the activated spine increased. This potentiation depended on the activity of NMDARs and several intracellular messengers and on the delayed signalling in a pathway initiated by the binding of dopamine on D1Rs (Fig. 6b). These two pathways downstream of NMDARs and D1Rs converge to activate CaMKII, which is most active when dopamine is
released after co-activation of the presynapse and postsynapse. Similar interactions between NMDAR-dependent plasticity and delayed dopamine availability occur in hippocampal slices, with intervals in the minute range180. It is not yet known if comparable interactions take place in the synapses of cortical neurons, although this could be tested with current technology. The mechanisms at work within the synapses are complex and we therefore expect that many discoveries about the interaction between glutamatergic transmission and neuromodulatory signals are still to be made. These studies could give new insight into how attentional feedback signals and RPEs interact to optimize the contribution of synapses to behaviour.

Conclusions

In recent years, researchers have made substantial progress in understanding how the neural circuits of the brain are rewired as the result of learning. Above, we have focused on the malleability of representations in sensory and association cortex and reviewed evidence for a role of corticocortical and thalamocortical feedback connections on the one hand, and neuromodulatory influences on the other. In combination, these factors may permit learning rules that can train the cortical circuitry to refine the representations of sensory stimuli as well as their mapping on to appropriate motor responses. The resulting learning rules can be implemented by synapses in the brain to overcome the credit assignment problem. We have briefly touched on the emerging insights into how gating and steering factors impact on the biochemical cascades that control whether a synapse strengthens or weakens. Future studies could test whether corticocortical and thalamocortical feedback tags the circuits that are responsible for stimulus–response mapping for plasticity, and could elucidate the identity of the tags and how they make synapses susceptible for neuromodulatory signals. Although feedback connections seem to enable the plasticity of feedforward connections, it remains to be determined whether the interactions between feedforward and feedback connections take place with cellular precision or with courser resolution at the level of, for example, the cortical column. Furthermore, future studies could examine how gating and steering factors might work together in scenarios besides reinforcement learning, considering roles of feedback connections and neuromodulatory systems in, for example, the detection of novelty and surprise.

Although many of the processes determining synaptic plasticity remain to be discovered, it is encouraging that we have reached a stage where insights from molecular, cellular and systems neuroscience and from theories of reinforcement learning and deep artificial networks inform each other and may now be integrated into a unified framework for learning in the brain.

Acknowledgements

The authors thank S. Bohte, C. Pennartz, M. Sherman, V. Kehayas, and H. Kennedy
for helpful input and comments. The work was supported by the Netherlands Organisation for Scientific Research (NWO; ALW grant 823-02-010 to P.R.R.), the EU Seventh Framework Programme (grant agreement 7202070 “Human Brain Project” to P.R.R., and European Research Council (ERC) grant agreement 339490 “Cortical algorithms” to P.R.R.), the Swiss National Science Foundation (SNF; research grants 31003A-153448, CRSII3-154453 to A.H., and the National Centre for Competence in Research (NCCR) Synapsy grant 51NF40-158776 to A.H.), and the International Foundation for Research in Paraplegia (to A.H.).

Author contributions
P.R.R. and A.H. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Competing interests
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Box 1 | Deep learning in the brain
In recent years, great advances have been made with deep artificial neural networks that are composed of many layers and that are trained with the so-called error-backpropagation rule, a method that specifies how connections between the units of a network should change during training. The error backpropagation adjusts synaptic weights in networks that are composed of several layers to reduce the errors in the mapping of inputs into the lower layer to outputs in the top layer. It does so by first computing the error, which is the difference between the actual and desired activity levels of output units. Error backpropagation then determines how the strength of connections between successively lower layers should change to decrease this error, by computing derivatives [G] using a method known as gradient descent [G]. Artificial neural networks trained by error backpropagation now attain human-level performance in image recognition [4] and in some computer games [33].

Artificial image-recognition systems usually take a convolutional network approach, in which the complexity of tuning of units increases in higher layers, and specialized layers are interspersed to pool activity across space and to build receptive fields that are translation-invariant [G] (see the figure below). The tuning of units at lower and higher levels in these convolutional networks resembles the tuning of neurons in lower and higher areas of monkeys and humans [38,181]. In convolutional networks,
many weights are shared — that is, copied from one location in the network to
another — which is biologically implausible. Furthermore, back in 1989 Francis Crick
argued that the error-backpropagation rule itself is neurobiologically unrealistic34. He
found it difficult to imagine how synapses in the brain could determine the change in
their strength that would decrease the overall network error —; that is, how they
could compute their own local error derivative.

However, researchers have proposed new ways in which learning rules that
are equivalent to error-backpropagation might be implemented in the
brain28,32,95,182–184 (reviewed elsewhere 185). Specifically, learning rules such as AGREL
(attention-gated reinforcement learning)28 and AuGMEnT (attention-gated memory
tagging)32 explain how synapses in deep networks can change to optimize reward
outcome during reinforcement learning, in a biologically realistic manner. As the
equations that establish the relation between these new learning rules and error
backpropagation are somewhat complex, we refer the mathematically inclined
reader to the original publications28,32. Conceptually, the main insight is that the
synaptic error derivative can be split into two factors: first, the steering RPE that
codes for the global network error and reaches all synapses through the release of
neuromodulators, and second, a gating signal from the response-selection stage and
carried by feedback connections that indicates how much of the credit or blame
should be attributed to the individual synapse. These steering and gating factors
jointly determine synaptic plasticity (as in equation (3) of the main text). In AGREL
and AuGMEnT, the strength of feedback connections becomes proportional to that
of feedforward connections during learning, and thus the learning rules become
computationally equivalent to error backpropagation. Interestingly, approximate
reciprocity between feedforward and feedback connections and efficient learning
can also emerge if feedback connections are fixed and only feedforward connections
are plastic, through a process called feedback alignment [G]31.

In other words, the brain can solve the credit-assignment problem in a
manner that is equivalent to deep learning. Accordingly, these rules can be used to
train simple artificial neural networks on several tasks that monkeys can be trained
on by trial and error32, and their capability goes beyond biologically plausible
learning rules that do not feature plasticity-gating feedback connections.
Interestingly, these networks make many of the mistakes that are also made by
animals undergoing training, and the tuning of units at intermediate network levels
becomes similar to that of neurons in the visual and association cortex13,28,32 (leading
to tuning curves similar to those seen in trained animals, such as those in Fig. 3c,f).
Hence, developments in many disciplines — from molecular biology to machine
learning and cognition — may now pave the way for a genuine understanding of how
deep learning is implemented in the brain.

Figure Legends
Figure 1 | Putative control signals that influence synaptic plasticity. During sensory processing, feedforward connections (black connections) propagate activity from lower to higher areas (left side of figure). Neurons in frontal cortex compete to determine the selected action. If an action has been selected, the ‘winning’ neurons provide an attentional feedback signal to the lower-level synapses responsible for the selected action (red connections), enabling their plasticity in a process that may be related to calcium events in dendrites (middle part of the figure). This enabling is called ‘tagging’ (red Ts represent tagged connections). The other connections are not plastic (dashed connections). Note that different actions enable plasticity of different connections as illustrated (different rows of the network). Neuromodulators code for the reward-prediction error (RPE) — that is, whether the outcome was better (green) or worse (red) than expected, and determine whether the tagged synapses increase (thicker connections) or decrease in strength (thinner connections). The lower panel is adapted from REF 25.

Figure 2 | Cortical feedforward, feedback and neuromodulatory information streams. Diagram of intracortical (a), long-range (b), subcortical (c) and neuromodulatory (d) connections within, to and from the sensory and association cortices. The main axodendritic synaptic input patterns are shown as arrows. a | Intracortical information streams include local interactions within and between cortical columns. Input to L4 and L2/3 propagates to all other layers (except L1) through ascending and descending connections. Horizontal connections distribute signals within L2/3 and L5a, whereas feedback is provided from L6 and L2/3 to L4, and from L5a to L2/3. b,c | Information exchange between cortical areas occurs through long-range corticocortical connections and transthalamic pathways. First-order (FO) thalamus provides input to lower cortical areas (level I in c). Cortical L5 output reaches higher-order (HO) thalamus, which in turn feeds forward to higher cortical areas (level II in c) or back to lower-order cortex (level I). Feedforward and feedback streams are segregated in different layers, to great extent in primates, and to some extent in rodents45,186. In primates, neurons in the deeper L3 and the superficial L5 project forward to L4 of higher-order cortical areas. Neurons in superficial L2/3 and in L5/6 of higher areas send feedback projections to L1 and L5 of lower areas43,56. In rodents, separate feedforward and feedback projections may originate from molecularly distinct neuronal subtypes45, but their distribution across the lamina is ‘salt-and-pepper’-like186,187. L1 is a main feedback layer, where inputs impinge on apical dendrites of pyramidal neurons. d | Patterns of neuromodulatory input to cortex remain poorly characterized. The current view holds that virtually all types of neuromodulation arrive in all layers of all cortical areas82, although some topographic organization and laminar specificity is observed for the cholinergic
projections. Neuromodulatory signalling occurs via both synaptic transmission and volume transmission, and in most instances through metabotropic receptors. The diagram is a composite, adapted from refs.

Figure 3 | Effects of learning on neuronal tuning curves.

- **a** | Monkeys in the study by Schoups et al. judged whether the orientation of the lower grating was tilted clockwise or anticlockwise from a right oblique orientation (green line, 45 degrees). They could always ignore the upper grating, as it was a distractor. The small circle on the left denotes a fixation point.
- **b** | Orientation tuning curves of example V1 neurons (green arrow indicates the trained orientation). Thick line segments highlight the slope of the tuning curves at the trained orientation.
- **c** | The slope of V1 neuron tuning curves at the trained orientation, as a function of the neurons’ preferred orientation (percent change in firing rate per degree of orientation). Training in the orientation judgement task increased the slope of tuning curve of neurons whose preferred orientation differed only slightly (by ~16°) from the trained orientation, and that were maximally informative for the task. The blue dashed line shows the slope of the tuning curves before training, whereas the red line shows the slope after training.
- **d** | In a study by Freedman and Assad, monkeys saw dots moving in one of 12 directions that were divided into two categories (red and blue arrows). The animals compared the category of a sample stimulus (cue-1) to that of a later probe stimulus (cue-2) and released a lever if the categories were the same.
- **e** | Activity elicited by the sample directions in an example LIP neuron. The neuron gave similar responses for stimuli of the same category (red or blue) but there were larger differences in activity between stimulus categories.
- **f** | Distribution of adjacent motion directions giving rise to the largest difference in stimulus-driven activity of individual LIP neurons. Note that for most cells, the largest changes in activity occurred at the category boundaries. Parts a–c are adapted from REF.

Figure 4 | Attentional selection and eye movement selection during curve-tracing.

- **a** | The animal first directs gaze to a small fixation point (FP). After a short delay, two curves appear on the screen. The curve that is connected to the fixation point is the target curve (T), and the other curve is a distractor (D). After an additional delay, the FP disappears, and the monkey makes an eye movement to the larger red circle that was previously connected to the fixation point (that is, the end of the T curve).
- **b** | In the left panel, the receptive fields of neurons in V1, V4 and fall on the target curve, whereas in the middle panel, they fall on the distractor curve.
- **c** | During an initial feedforward processing phase (black bars), neurons in areas V1 and FEF are activated by the appearance of a curve in their receptive field (dashed line at time zero). In a later, recurrent processing phase, feedback connections come into play.
(red bars) and now the representation of the target curve that is selected for an eye movement response is enhanced (red lines) in both brain regions, compared to the representation of the non-selected distractor (blue dashed lines). Part c is reproduced from ref. 100.

Figure 5 | Gating of plasticity of feedforward connections to S1 by higher-order thalamic nuclei. a | Schematic of the experiment; somatosensory thalamocortical and corticothalamic pathways. Whisker stimulation-driven sensory postsynaptic potentials, and the potentiation thereof, in L2/3 neurons were assessed using whole-cell recordings in vivo. A sensory stimulus applied to the whisker activates feedforward inputs (from the VPm) and feedback inputs (from the POm) to S1, which causes NMDAR-mediated potentials in pyramidal cells. Activity of POm is also gated by input from other cortical areas and the zona incerta. b | Whisker deflections induce postsynaptic potentials in L2/3 S1 neurons that consist of two components: a short-latency AMPAR-mediated depolarization (PSP\textsubscript{short}), and a long-latency plateau depolarization (NMDA\textsubscript{plateau}). The plateau component can be blocked by NMDAR blockers (DAP5) as well as by muscimol injections targeted to the POm (top graph). These two methods of blocking of NMDAR-mediated plateau potentials prevent whisker deflection-induced synaptic potentiation (bottom graph). c | Schematic of a whisker-stimulus detection task and the imaging of calcium events in two pyramidal cell dendrites (#1 and #2) in S1. Upon weak whisker deflections near the detection threshold (0), dendritic Ca2+ events are stronger in hit trials (stimulus detection, rewarded) trials than in miss trials (failed stimulus detection, unrewarded), suggesting that hit-related feedback inputs are involved in generating them. Parts a and b are adapted from ref. 77, the mouse drawings in parts a and c are from ref. 189 and the schematic and data in c are adapted and reproduced, respectively from ref. 110.

Figure 6 | Gating and steering of synaptic plasticity. a | Within the cortical column, feedback connections (FB) target distal dendrites as well as disinhibitory circuits that enable plasticity (part (ii)). In diagram (ii), the feedforward connections propagate activity to higher levels, which in turn provide feedback to the thalamocortical synapse that is going to be held responsible for the outcome of the action. The feedback does this by causing dendritic calcium events, which induce synaptic tags on activated thalamocortical synapses (and possibly other synapses in the same column). Diagram (iii), the tag remains once the activity of the column ceases. Diagram (iv), the reward prediction error gives rise to the release of neuromodulators to increase or decrease the strength of tagged synapses, influencing the probability that the same action will be selected in the future. Diagram (v), the tagged synapse has now been strengthened. b | Sequence of
molecular events in postsynaptic spines in the striatum. The binding of glutamate to
NMDARs gates plasticity through calcium influx. Neuromodulators, such as
dopamine, activate another pathway through, for example, D1Rs, adenyl cyclase,
cAMP (which is broken down by phosphodiesterase (PDE)) and PKA–DARPP32–PP1
signalling. Both pathways need to be active for the activation of CaMKII, which
causes an increase in synaptic strength as measured by an increase in the volume of
dendritic spines. Part b is reproduced from ref. 14.

Glossary
Reinforcement learning
Trial and error learning while interacting with an environment and experiencing
rewards and punishments as consequences of the chosen actions.

Reward-prediction error (RPE)
Difference between the amount of reward that was expected and the amount that
was obtained

Eligibility traces
In reinforcement learning theory, eligibility traces are parameters that determine
whether connections in a network undergo plasticity upon reward-prediction errors

Synaptic tags
Biochemical signals at synapses that determines whether they will undergo plasticity

Error-backpropagation rule
A mathematical method used to calculate the contribution of connections to the
error of a network with multiple layers between input and output.

Optokinetic reflex
Innate reflexive smooth eye-movements elicited by large moving visual stimuli.

Frontal eye fields
Area of the frontal cortex involved in the planning of eye movements

Martinotti cells
Somatostatin-expressing inhibitory interneurons with a characteristic morphology
that target the dendritic tufts of pyramidal cells in various cortical layers.

Unsupervised learning
Inferring the structure of unlabeled data when information about desired
categorizations is not provided

Spike-timing-dependent plasticity
Plasticity rule where the change in the strength of synapses depends on the relative timing of pre- and postsynaptic action potentials.

Derivatives

The derivative of the error function to a synaptic weight is the rate of change of the error when changing the strength of a particular synapse.

Gradient descent

Mathematical optimization method that determines the direction of the vector of changes in all synaptic weights causing the largest decrease in the network’s error.

Translation-invariant

Independence of object-recognition of the object’s location relative to the viewer.

Feedback alignment

If the feedback and feedback weights of a neural network are not reciprocal, error-backpropagation causes feedforward weights to align, that is, to become more symmetrical.

Key points

1) In addition to pre- and postsynaptic mechanisms, synaptic plasticity depends on neuromodulatory substances and feedback connections from higher-order cortical and thalamic brain regions.

2) Synaptic plasticity in the brain depends on the reward-predication errors and on selective attention. Neuromodulatory systems code for the reward-prediction errors and feedback connections from the response selection stage mediate top-down attention effects.

3) The combined influence of feedback connections and neuromodulatory substances on plasticity enables powerful learning rules for the training of “deep”, multilayered neuronal networks.

4) Feedback connections project to cortical layers that are distinct from feedforward input, where they impinge on distal dendritic segments, separate excitatory neuronal populations, or inhibitory interneurons.

5) Feedback connections gate plasticity in cortical pyramidal neurons by promoting NMDA-receptor driven calcium entry into dendrites and by disinhibition of the cortical column, among others by activating VIP-positive interneurons.
6) Synaptic tags are biochemical processes that make synapses eligible for plasticity.

Neuromodulators released later can interact with tagged synapses to increase or decrease synaptic strength.

[Au: Please provide a list of up to 6 brief bullet points, each no more than 2 sentences long, highlighting the take-home messages of the Review.]

References

50. Self, M. W., van Kerkoerle, T., Supér, H. & Roelfsema, P. R. Distinct roles of the cortical layers

1160
1162
1164
1166
1168
1170
1172
1174
1176
1178
1180
1182
1184
1186
1188
1190
1192
1194
1196
1198
1200
1202
1204
1206
1208
1210
1211 156. Jacobs, B. L. & Azmitia, E. C. Structure and function of the brain serotonin system. *Physiol Rev*
1219 158. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal
1221 159. Ranade, S. P. & Mainen, Z. F. Transient firing of dorsal raphe neurons encodes diverse and
1223 160. Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons signal reward and
1225 161. Bromberg-martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal
1227 162. Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81,
1228 1360–1374 (2014).
1230 Neurosci. 7, 60 (2013).
1231 164. Jitsuki, S. et al. Serotonin mediates cross-modal reorganization of cortical circuits. Neuron 69,
1233 165. Sara, S. J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition
1235 166. Bouret, S. & Richmond, B. J. Sensitivity of locus ceruleus neurons to reward value for goal-
1240 modulate sensory network function in the awake rat phasic and tonic patterns of locus
1241 coeruleus output Differentially Modulate Sensory Network Function in the Awake Rat.
1243 169. Pawlak, V., Wickens, J. R., Kirkwood, A. & Kerr, J. N. D. Timing is not everything:
1247 171. Johansen, J. P. et al. Hebbian and neuromodulatory mechanisms interact to trigger associative
1254 (2015).
1255 175. Cassenaer, S. & Laurent, G. Conditional modulation of spike-timing-dependent plasticity for
1257 176. Redondo, R. L. & Morris, R. G. M. Making memories last: the synaptic tagging and capture
1265 180. Brzosko, Z., Schultz, W. & Paulsen, O. Retroactive modulation of spike timing-dependent
1269 182. Urbanczik, R. & Senn, W. Learning by the dendritic prediction of somatic spiking. Neuron 81,
1271 183. Schiess, M., Urbanczik, R. & Senn, W. Somato-dendritic Synaptic Plasticity and Error-

Fig. 1

Feedforward
[Sensory processing]

Feedback
[Motor selection and attentional tagging]

Neuromodulator
[Reward/ punishment]

Selected motor program

Input layer
Association layer
Output layer

Time
Fig. 2

- **Level I** Level II

Level I Level II

- **Intracortical** (local)
- **Corticocortical** (long-range)
- **Subcortical**
- **Neuro-modulation**

Neuron

- **Axons**
- **Dendrites**

Feedforward

Feedback

Horizontal

Thalamus

- FO
- HO

Striatum

Brainstem

Spinal cord

Tectum

ACh

DA

NA

5HT

Fig. 2
Fig. 3

(a) Schematic of passive and trained cells in V1 and LIP.

(b) Firing rate profiles for different cells in V1.

(c) Graph showing the slope at TO (% change / deg) vs. preferred orientation - trained orientation (deg).

(d) Diagram of the experimental paradigm involving cues, delays, and decision phases.

(e) Graph showing firing rates over time in Area LIP.

(f) Circular graph representing orientation preferences.
Fig. 4
RWS: Rhythmic whisker stimulation

Thalamus

L1, L2/3, L4, L5, L6

Whisker input

Other cortical areas

Zona Incerta

FB, FF

Stim intensity

Detection prob.

Stim Reward Imaging of Ca²⁺

10 trials

Hit Miss

0 200%

Ca²⁺ responses

Near-θ stim

Average activity

excitation : inhibition : whisker deflection

PSPshort (%)

80 100 120 140

* *

LTP

control

DAP5

muscimol

Post-RWS

Recording

Fig. 5
Fig. 6
Fig. Box