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unaffected in PSD95-GFP knock-in neurons (0.14 � 0.001 �m2, �> 0.05; Fig 4D). Lastly, we
found that PSD95 was significantly more enriched at synapses in PSD95 knock-in cells (ratio
synapse/shaft intensity: 17.6 � 1.4) compared with PSD95-overexpressing neurons (11.8 � 1.0,
Student � test, �< 0.01; Fig 3E), indicating that a large fraction of overexpressed PSD95 mislo-
calized to the dendritic shaft.

Fig 4. Validation of ORANGE labeling efficiency. (A) Representative images of dendrites transfected with soluble GFP, PSD95-GFP knock-in (KI) construct, or a
PSD95-GFP overexpression construct (green) stained with anti-PSD95 (magenta, Alexa568). DIV 21. Scale bar, 5 �m. (B) Correlation between PSD95-GFP KI and anti-
PSD95 staining intensity. (C) Quantification of synaptic PSD95 levels, (D) synapse area, and I PSD95 synapse/shaft intensity. (F) Representative images of dendrites
coexpressing Homer1c-mCherry (green) and either the empty pORANGE template vector or PSD95-GFP KI construct (blue) stained with anti-PSD95 (magenta,
Alexa647). DIV 21. Scale bar, 5 �m. (G) Quantification of PSD95 levels in transfected but KI-negative neurons. Data are represented as means � SEM. � �< 0.05, ���<
0.01, ��� �< 0.001, ANOVA or Student � test. Underlying data can be found in S1 Data. DIV, day in vitro; GFP, green fluorescent protein; HA, hemagglutinin; KI,
knock-in; ns, not significant; OE, overexpression; ORANGE, Open Resource for the Application of Neuronal Genome Editing; PSD95, postsynaptic protein 95; RIM1,
Rab3-interacting molecule 1.

https://doi.org/10.1371/journal.pbio.3000665.g004
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trafficking and function of AMPA receptors at synapses. Here, we developed knock-in con-
structs for two AMPA receptor interactors: Germ cell-specific gene 1-like protein (GSG1L)
and Ferric-chelate reductase 1-like protein (FRRS1L)/C9orf4. GSG1L has been recently shown
to modulate AMPA receptor function [48,49]. Using gSTED imaging, we found that GSG1L
localizes throughout the dendritic shaft and in dendritic spines, where it closely associates with
synaptic PSD95 (Fig 6L). In contrast, FRRS1L was found to be excluded from synapses (Fig
6M) but showed a punctate distribution in the dendritic shaft, closely associated with the
endoplasmic reticulum (ER) (Fig 6N). This is in line with a recent study showing that FRRS1L
regulates AMPA receptor trafficking from the ER to control AMPA receptor surface expres-
sion [50–53]. Altogether, these results demonstrate the potential of ORANGE to uncover the
nanoscale organization of endogenous proteins, in particular those with unknown distribution
due to lack of specific antibodies, in individually labeled neurons.

Dissection of endogenous NMDA receptor distribution and dynamics
within individual synapses
Based on overexpression and antibody-labeling studies, the spatial organization of NMDA
receptors at excitatory synapses has been proposed to be heterogenous, with receptors accu-
mulating in distinct subsynaptic nanodomains [54–56]. However, because overexpression of
individual receptor subunits could affect subunit stoichiometry and function of endogenous
receptors [57], we combined ORANGE with superresolution techniques to dissect the distri-
bution and dynamics of NMDA receptors. To visualize the total pool of NMDA receptors, we
developed a knock-in construct to endogenously tag the obligatory GluN1 subunit with GFP
(Fig 7A). Several studies have consistently estimated that the number of NMDA receptors at
individual synapses is relatively low, ranging from 10 to 20 receptor complexes per synapse
[32,58]. Despite these low copy numbers, we could detect concentrated dendritic clusters of
GFP-GluN1, most of which colocalized with immunolabeled PSD95 (Fig 7A). Interestingly,
we found that GFP-GluN1 intensity did not correlate with anti-PSD95 immunolabeling inten-
sity (Fig 7B) (Pearson r: 0.19, R2: 0.038, � � 450 GluN1 clusters from nine neurons), consistent
with earlier studies showing that the total number of NMDA receptors is largely invariable and
does not scale with synapse size [59–61]. Using gSTED imaging, we found that although most
GFP-GluN1 clusters localized to synapses, some smaller extrasynaptic clusters could be
detected (Fig 7C–7E). Next, we measured the total GFP-GluN1 cluster area in individual syn-
apses and found a slight correlation with synapse size (Pearson r: 0.64, R2: 0.4087, � � 266 syn-
apses from three neurons; Fig 7F). Thus, our data suggest that the subsynaptic area covered by
NMDA receptors, but not the total number of receptors, scales with synapse size. gSTED imag-
ing of individual synapses also indicated that the subsynaptic distribution of GFP-GluN1 is
heterogeneous (Fig 7B and 7G), with individual synapses containing one or more smaller
GFP-GluN1 substructures (Fig 7H) (� � 266 synapses from three neurons).

To further investigate the subsynaptic distribution of NMDA receptors, we turned to sin-
gle-molecule localization microscopy (SMLM). The GFP-GluN1 knock-in was immunolabeled
with anti-GFP and Alexa647-coupled secondary antibodies for direct stochastic optical recon-
struction microscopy (dSTORM) to reconstruct the spatial organization of NMDA receptors
at individual synapses with nanometer precision (Fig 7I and 7J). Clusters of GFP-GluN1 recep-
tors were identified using density-based spatial clustering of applications with noise
(DBSCAN) [62]. Next, all localizations within individual clusters were plotted and color-coded
for the local density. These local density maps revealed that, within individual clusters, NMDA
receptors form distinct nanodomains (Fig 7K), consistent with our gSTED data (Fig 7D). We
found that the majority of GFP-GluN1 clusters contained one to three nanodomains with a

PLOS BIOLOGY CRISPR/Cas9-based genome editing toolbox to tag endogenous proteins in neurons

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000665 April 10, 2020 14 / 41

https://doi.org/10.1371/journal.pbio.3000665


Fig 7. NMDA receptors concentrate in subsynaptic nanodomains and are highly immobilized in synapses. (A) Representative images of a dendrite positive for
GFP-GluN1 KI (green) stained for PSD95 (magenta, Alexa647). Scale bar, 2 �m. (B) Correlation between GFP-GluN1 KI and anti-PSD95 staining intensity within
individual GFP-GluN1 puncta. (C) Representative gSTED images of dendrites positive for GFP-GluN1 KI enhanced with anti-GFP (green, ATTO647N) and anti-
PSD95 (magenta, Alexa594). DIV 21. Scale bar, 2 �m. (D) Zooms of individual synapses indicated in (C). Scale bar, 500 nm. (E) FWHM analysis of GFP-GluN1
structures comparing width and length of individual synaptic (red) and extrasynaptic (blue) GluN1 clusters. (F) Correlation between GFP-GluN1 cluster area and
synapse area (based on anti-PSD95 staining) for individual synapses. (G) Line scan of synapse zoom 3 in (D). (H) Quantification of the number of GFP-GluN1
substructures per synapse. (I) Representative image of dendrite positive for GFP-GluN1 KI stained with anti-GFP (Alexa647). DIV 21. Scale bar, 1 �m. (J) Single-
molecule dSTORM reconstruction of example shown in (I). Scale bar, 1 �m. (K) Examples of individual GFP-GluN1 clusters with single localizations plotted and color-
coded based on the local density. Scale bar, 200 nm. (L) Quantification of number of GFP-GluN1 nanodomains per cluster. (M) Frequency distribution of GFP-GluN1
nanodomain size. Dotted line indicates nanodomain size cutoff. Bin size: 5 nm. (N) Representative example of GFP-GluN1 (anti-GFP nanobody conjugated to
ATTO647N) single-molecule trajectories in a dendrite plotted with a random color and on top of a synapse mask (gray) based on Homer1c-mCherry widefield image.
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median size of approximately 62 nm (IQR: 53–71 nm) (� � 859 GFP-GluN1 clusters from
three neurons) (Fig 7L and 7M). Thus, these SMLM data indicate that endogenous NMDA
receptors form distinct subsynaptic nanodomains.

To gain insight in the subsynaptic mobility of endogenously expressed NMDA receptors,
we probed the diffusion kinetics of individual receptors using universal point accumulation in
nanoscale topography (uPAINT) [63]. Stochastic labeling of individual GFP-tagged receptors
with a GFP nanobody coupled to ATTO647N provided a map of individual receptor mobility
along stretches of dendrites (Fig 7N and 7O). Most receptor trajectories mapped within the
boundaries of the synapse. Strikingly, we found that these synaptic NMDA receptors were
largely immobilized (median diffusion coefficient synaptic tracks: 0.0096 �m2/s, IQR: 0.0079–
0.0122, � � 462 tracks from 6 neurons), whereas on average, extrasynaptic receptors diffuse at
higher rates (0.0224 �m2/s, IQR: 0.0123–0.0419, � � 307 tracks from 6 neurons) (Fig 7P). Alto-
gether, by combining the ORANGE toolbox with superresolution microscopy, we show that
NMDA receptors are enriched in the PSD, where they are highly immobilized and cluster in
subsynaptic nanodomains.

Cre-dependent coexpression for multiplex labeling of two proteins in single
neurons
We have shown that ORANGE mediates the integration of small epitope tags and fluorescent
proteins in single genes (Fig 1). Tagging two proteins simultaneously in one neuron for dual-
color imaging, however, is challenging using this approach. NHEJ-mediated integration of the
donor sequence is homology independent, and therefore, the integration of independent
donor sequences cannot be targeted to specific genes but occurs at random [23]. Recently,
NHEJ-based, targeted integration of Cre recombinase was used to disrupt the target gene and
drive the expression of a second protein used as a reporter of a successful knock-out [25].
Based on this, we reasoned that genomic integration of a fluorescent protein together with Cre
recombinase could be used to trigger the expression of a second gRNA from an additional
knock-in plasmid. This approach would facilitate the sequential integration of two donor
sequences targeted to two genomic loci in a single neuron. To test this, we first developed
knock-in constructs integrating a C-terminal GFP tag fused to a P2A-Cre sequence
(GFP-P2A-Cre), leading to bicistronic expression of a GFP-fusion protein and Cre recombi-
nase (Fig 8A). This yielded robust recombination and expression of flip-excision (FLEx)
mCherry and Synapsin-FLAG (Fig 8B). We did, however, observe some cells that only
expressed the FLEx construct without visible GFP signal, suggesting that either Cre expression
is somewhat leaky or that very low levels of Cre are already sufficient to recombine FLEx
switches.

Building on GFP-P2A-Cre knock-ins, we developed a pORANGE vector containing a Cre-
dependent Lox-STOP-Lox sequence in the U6 promoter [64], which blocks expression of the
gRNA until Cre is expressed (Fig 8C). When combined with a GFP-P2A-Cre knock-in, this
would mediate reliable dual-color knock-ins with NHEJ because the Lox-STOP-Lox gRNA is
only expressed after GFP-P2A-Cre integration is completed and a functional protein has been
produced from this allele (S11A Fig). Thus, this mechanism should prevent mix-up of donor

Dotted line indicates cell outline. DIV 21. Scale bar, 1 �m. (O) Zooms of individual spines indicated in (N) with example trajectories of synaptic (red) or extrasynaptic
(blue) receptors. Scale bar, 200 nm. (P) Frequency distribution showing the diffusion coefficient of synaptic and extrasynaptic tracks. Data in bar plots are presented as
means � SEM. Underlying data can be found in S1 Data. DIV, day in vitro; dSTORM, direct stochastic optical reconstruction microscopy; FWHM, Full Width at Half
Maximum; GFP, green fluorescent protein; GluN, glutamate receptor NMDA; gSTED, gated stimulated-emission depletion; KI, knock-in; NMDA, �methyl-D-
aspartate; PSD95, postsynaptic protein 95.

https://doi.org/10.1371/journal.pbio.3000665.g007
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explain why these scores are not correlated with the accuracy or efficiency of donor
integration.

Second, for all our targets, we found that the distribution of the GFP signal was consistent
with previous reports of protein localization inferred from immunolabeling or biochemical
fractionation experiments. Our results indicate that, when expressed, the tag accurately reports
protein localization and does not affect protein levels in most knock-in-positive neurons.
These results show that well-designed knock-ins do not affect localization of the targeted pro-
tein and that off-target expression of the donor tag is extremely rare. Multiple mechanisms
within the design of knock-in construct prevent off-target expression. We selected target
sequences with a high MIT score, meaning that the sequence is unique within the genome and
that potential off-targets are intergenic or in introns. If off-target integration in protein-coding
sequences does occur, the donor orientation will be random (i.e., 50% is in the inverted orien-
tation). Additionally, in 66% of off-target integrations, the donor would be out of frame, and
donor integration in a random location within a protein is likely to severely affect folding,
leading to degradation of the targeted protein.

Third, with immunocytochemistry, we found that knock-ins were most often expressed at
endogenous levels. However, in a few cases, we did observe that the tagged protein was
expressed at slightly lower levels compared with the untagged protein in untransfected neu-
rons. This might indicate that, in these neurons, one of the two alleles contains indels after
genome editing and/or failed to integrate the donor DNA, consistent with estimates with the
HITI method that 30%–50% of knock-in-positive cells show biallelic integration [24]. We also
showed that, for C-terminal tagging of PSD95, Shank2, and N-terminal Bassoon (but not C-
terminal Bassoon knock-ins), knock-in-negative neurons are likely partial or complete knock-
outs. This difference in protein levels, especially for C-terminal-tagged proteins, might be the
result of different sensitivity to, for example, nonsense-mediated decay [65]. Ongoing advance-
ments in CRISPR/Cas9 technology are likely to lead to new developments that increase the on-
target integration efficiency and precision of this approach. For instance, Cas9 variants with
higher specificity could decrease indel frequency [66,67], and the knock-in efficiency and
repair accuracy may be predicted based on the target sequence [28,29]. Also, alternative deliv-
ery methods such as ribonucleoproteins (RNPs) [68] might increase the efficiency of DNA
delivery.

An important advantage of our method is that targeted integration of common epitope tags
circumvents the need for developing new specific antibodies. In particular, for proteins that
are highly homologous in their amino acid sequence and for which generating specific anti-
bodies is challenging, it is now possible to develop specific knock-in constructs that will report
subcellular localization at unmatched specificity. As an example, we demonstrated successful
knock-ins for RIM1 and RIM2, two highly homologous active zone proteins for which iso-
form-specific antibodies are not available. The knock-in constructs presented in our library
are designed using the rat genome as a template. However, because of high gene homology,
multiple of the knock-in constructs are compatible with the mouse genome (see S2 Table). For
example, we have shown that our GluA1 knock-in works both in dissociated rat hippocampal
cultures as well as in mouse organotypic hippocampal slice cultures and in vivo in mouse
brain.

ORANGE is easily employed on targets yet to be characterized. Next-generation sequencing
efforts and high-resolution proteomics studies continue to discover the implication of novel
proteins in biological processes, but for many of these proteins, specific and efficient antibod-
ies are lacking. For instance, we developed knock-in constructs for two AMPA receptor com-
plex constituents, FRRS1L/C9orf4 and GSG1L, that have only recently been discovered in a
high-resolution proteomics study [47]. For both proteins, functional characterization is
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transferred to a gene pulser cuvette (Biorad), and electroporated using a Lonza Nucleofector
2b. Immediately after electroporation, fresh 37˚C NB medium supplemented with B27, L-glu-
tamine, and pen/strep was added to the cuvette, after which the neurons were plated on a
coated �18-mm coverslip using a Pasteur pipette. Neurons were incubated at 37˚C and 5%
CO2 for 3 hours, after which all medium was replaced with fresh NB medium supplemented
with B27, L-glutamine, and pen/strep.

HaloTag labeling of dissociated hippocampal cultures
HaloTag labeling was performed with cell-permeable Halo-JF549 or Halo-JF646 ligands. Prior
to use, ligands were dissolved in DMSO to 200 �M and stored in single-use aliquots at �20˚C.
HaloTag ligands were added to culture medium at a final concentration of 200 nM, and cells
were placed back in the incubator for 15 minutes. After rinsing the cells with culture medium,
cells were fixed using 4% (w/v) paraformaldehyde (PFA) and 4% (w/v) sucrose in phosphate-
buffered saline (PBS) (PFA/Suc).

Immunocytochemistry of dissociated hippocampal cultures
Immunocytochemistry was performed as described below, unless indicated otherwise. Hippo-
campal neurons were fixed using PFA/Suc for 10 minutes at RT and washed three times in
PBS containing 0.1 M glycine (PBS/Gly). Neurons were blocked and permeabilized in blocking
buffer (10% [v/v] normal goat serum [NGS] (Abcam) in PBS/Gly with 0.1% [v/v] Triton X100)
for 1 hour at 37˚C. Next, coverslips were incubated with primary antibodies diluted in incuba-
tion buffer (5% [v/v] NGS in PBS/Gly with 0.1% [v/v] Triton X100) overnight at 4˚C. Cover-
slips were washed three times for 5 minutes with PBS/Gly and incubated with secondary
antibodies diluted 1:400 in incubation buffer for 1 hour at RT. Coverslips were washed three
times for 5 minutes in PBS/Gly, dipped in milliQ water (MQ), and mounted in Mowiol
mounting medium (Sigma).

AAV production
AAV vectors serotype 5 encoding for GluA1-Halo or PSD95-Halo knock-ins were produced
as described in detail in [77] using helper plasmids obtained from [78]. In brief, HEK293T
cells were plated 1 day before transfection in Dulbecco’s Modified Earl’s Medium (DMEM)
supplemented with 10% fetal calf serum (FCS) and 1% pen/strep. At 2 hours before transfec-
tion, medium was exchanged with Iscove’s Modified Dulbecco’s Medium (IMDM) containing
10% FCS, 1% pen/strep, and 1% glutamine. Transfection was performed with polyethyleni-
mine (PEI). At 1 day after transfection, medium was exchanged with fresh IMDM with supple-
ments. At 3 days after transfection, medium was aspirated, and cells were harvested using a
cell scraper. After three freeze/thaw cycles and treatment with DNAseI, AAV vectors were
purified using an iodixanol density gradient and ultracentrifugation (70 minutes, 69,000 rpm
at 16˚C using rotor 70Ti [Beckman Coulter]). The fraction containing AAV particles was con-
centrated with centrifugation (3,220�, 15 minutes at RT) using an Amicon Ultra 15 column
(Merck Millipore). Columns were washed 3 times using D-PBS containing 5% sucrose. AAV
vectors were stored at �80˚C until use. Titers were measured using qPCR.

Stereotactic injection and staining of acute brain slices
AAV vectors were injected in 4- to 7-month-old Rosa26-Cas9 knock-in mice of either sex
[27]. Mice were anaesthetized with an intraperitoneal injection of ketamine (75 mg/kg, Narke-
tan; Vetoquinol BV) and dexmedetomidine (1 mg/kg, Dexdomitor; Orion Pharma). Analgesia
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was provided before the start of surgery (carprofen, 5 mg/kg, subcutaneous, Carporal; AST
Farma BV). Mice were given eye cream (CAF; CEVA Sante Animale BW) and placed in a ste-
reotactic frame (Kopf Instruments). Local anesthesia was applied by spraying lidocaine (100
mg/mL; Xylocaine, AstraZeneca BV), and two holes were drilled for entrance of the injection
needles. AAV vectors, 500 nl, with a titer of 6.2 � 1011 gc/ml were injected bilaterally (�2.46
mm posterior to bregma, +/� 2.2 mm lateral from bregma, and �1.3 mm ventral from the
skull, under a 10˚ angle) at 100 nl per minute with a syringe pump (Harvard Apparatus) con-
nected to stainless steel needles (31G, Coopers Needleworks) targeted to the CA1 region of the
hippocampus. Needles were left in place for 10 minutes following the injection. After surgery,
mice were given atipamezole (2.5 mg/kg, intraperitoneal, SedaStop; AST Farma BV) and saline
for rehydration. During the following 7 days, mice continuously received carprofen through
their drinking water (0.027 mg/ml).

After 4 weeks, acute brain slices were obtained. Mice were first anaesthetized with isoflur-
ane and decapitated. Brains were rapidly isolated, and 250-�m-thick coronal slices were made
on a vibratome (Leica VT1200 S) in ice-cold artificial cerebrospinal fluid (ACSF) containing
(in mM) 124 NaCl, 26 NaHCO3, 11 D-glucose, 2.5 KCl, 1 NaH2PO4, HEPES 5, 7 MgSO4, and
0.5 CaCl2. Subsequently, slices were transferred to an immersion-style holding chamber con-
taining 124 NaCl, 26 NaHCO3, 11 D-glucose, 2.5 KCl, 1 NaH2PO4, HEPES 5, 1 MgSO4, and 2
CaCl2, in which they recovered for at least 1 hour at RT. ACSF solutions were continuously
bubbled with carbogen gas (95% O2, 5% CO2) and had an osmolarity of approximately 300
mOsm. After recovery, slices were stained for 1 hour with 250 nM Halo-JF646 ligand diluted
in ACSF. Following rinsing with ACSF, slices were fixed overnight with 4% PFA, washed in
PBS, and mounted with VectaShield (VectorLabs).

Lentivirus production and infection
For lentivirus production, HEK293T cells were maintained at a high growth rate in DMEM
supplemented with 10% FCS and 1% pen/strep. At 1 day after plating, cells were transfected
using PEI (Polysciences) with second-generation LV packaging plasmids (psPAX2 and 2MD2.
G) and a pFUGW construct containing the desired insert at a 1:1:1 molar ratio. At 6 hours
after transfection, cells were washed once with PBS, and medium was replaced with DMEM
containing 1% pen/strep. At 48 hours after transfection, the supernatant was harvested and
briefly centrifuged at 700� to remove cell debris. The supernatant was concentrated using Ami-
con Ultra 15 100K MWCO columns (Milipore), and Cas9 and knock-in viruses were mixed at
1:1 and used immediately for infection. For cultured hippocampal neurons at DIV 2–4, 2–4 �l
virus was added per well, and neurons were fixed at DIV 21–23 with 4% PFA/Suc for 10 min-
utes. For organotypic hippocampal slice cultures, virus was injected into the CA1 region at
DIV 1 using an Eppendorf Femtojet injector. Slices were fixed at DIV 10 with 4% PFA in PBS
for 30 minutes, washed 3 times for 10 minutes with PBS, and mounted with VectaShield (Vec-
tor Laboratories).

Next-generation sequencing of genomic sites of integration
Genomic DNA was isolated from electroporated neurons at DIV 4. Neurons were lysed in
lysis buffer (100 mM Tris, 50 mM EDTA, 40 mM NaCl, 0.2% SDS [pH 8.5]) and incubated
with 100 �g/ml Proteinase K (Roche) at 55˚C for 2 hours, followed by 1 hour at 85˚C to inacti-
vate Proteinase K. Genomic DNA was isolated by ethanol precipitation and dissolved in elu-
tion buffer (10 mM Tris [pH 8.0]) (Qiagen). Genomic PCR was performed to amplify the 50

and 30 junctions of the integrated donor (for PCR primers used, see S4 Table) using a touch-
down PCR and Phusion HF polymerase (Thermo Fisher Scientific). Genomic primers were
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intensity of the GFP signal and anti-PSD95 staining was measured, background was sub-
tracted, and values were normalized to the mean intensity value of all ROIs for both individual
channels. Normalized intensity values for the GFP-GluN1 knock-in signal and anti-PSD95 sig-
nal of individual synapses were plotted. In total, 450 synapses from nine neurons divided over
two independent neuronal cultures were used in the analysis.

The FIJI plug-in Full Width at Half Maximum (FWHM) macro developed by John Lim was
used to measure the FWHM from intensity profiles using Gaussian fitting. Line scans were
drawn along the width and length of identified GluN1 substructures (by setting an appropriate
brightness/contrast) to obtain the FWHM of the length and width of these substructures. Sub-
sequently, these substructures were categorized as synaptic or extrasynaptic based on the colo-
calization with PSD95. For image display, the length was plotted against the width for each
cluster. In all, 479 GFP-GluN1 clusters (387 synaptic, 92 extrasynaptic) from three neurons
were analyzed.

For the quantification of total GluN1 cluster area per synapse, and correlation with synapse
area, the same images were used as for the quantification of the FWHM of the GluN1 substruc-
tures. Specifically, the STED resolved images were used for the quantification of GluN1 cluster
area, whereas the confocal images were used to quantify the area of the PSD, using PSD95 as a
marker. First, an ROI was drawn around the knock-in neuron of interest to clear the outside
of the ROI, removing all background. Subsequently, the image was subjected to thresholding
to isolate the objects of interest from the background and watershedding to separate overlap-
ping objects. Then, all objects (GluN1 clusters and PSDs) were detected using “Analyze Parti-
cles” with a detection size of 0.02-Infinity (�m2) for GluN1 substructures and 0.04-Infinity
(�m2) for PSDs, and all with a detection circularity of 0–1.

SMLM and detection
dSTORM imaging was performed on a Nikon Ti microscope equipped with a Nikon 100� NA
1.49 Apo total internal reflection fluorescence (TIRF) oil objective, a Perfect Focus System.
Effective pixel size is 65 nm. Oblique laser illumination was achieved using a custom illumina-
tion pathway with a 60-mW, 405-nm-diode laser (Omicron); a 200-mW, 491-nm-diode laser
(Omicron); and a 140-mW, 641-nm-diode laser (Omicron). Emission light was separated
from excitation light with a quad-band polychroic mirror (ZT405/488/561/640rpc, Chroma)
and additional band-pass emission filters (ET 525/595/700, Chroma). Fluorescence emission
was acquired using an ORCA-Flash 4.0v2 CMOS camera (Hamamatsu). Lasers were con-
trolled using Omicron software, whereas all other components were controlled by �Manager
software [83].

Live-cell SMLM imaging experiments were performed on a Nikon Ti microscope equipped
with a 100� NA 1.49 Apo TIRF oil objective, a Perfect Focus System, and an additional 2.5�
Optovar to achieve an effective pixel size of 64 nm. Oblique laser illumination was achieved
using a custom illumination pathway with an AA acousto-optic tunable filter (AA opto-elec-
tronics); a 15-mW, 405-nm-diode laser (Power Technology); a 100-mW, 561-nm-DPSS laser
(Cobolt Jive); and a 40-mW, 640-nm-diode laser (Power Technology). Emission light was sep-
arated from excitation light with a quad-band polychroic mirror (ZT405/488/561/640rpc,
Chroma) and additional band-pass emission filters (ET 525/595/700, Chroma). Fluorescence
emission was acquired using a DU-897D EMCCD camera (Andor). All components were con-
trolled by �Manager software [83].

Acquired image stacks were analyzed using the ImageJ plug-in Detection of Molecules
(DoM) v1.1.5 [84]. Briefly, each image was convoluted with a 2D Mexican hat–type kernel that
matches the microscope’s point spread function. Spots were detected by thresholding the
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diameter<30 nm were rejected. In total, 859 clusters from three neurons from two indepen-
dent experiments were analyzed.

uPAINT and analysis
Neurons transfected with the GFP-GluN1 knock-in construct #1 and pCamk Homer1c-
mCherry at DIV 3 were imaged at DIV 21–23 in extracellular imaging buffer supplemented
with 0.8% BSA. GFP-GluN1-positive neurons were identified by GFP signal, and ATTO647N-
conjugated anti-GFP nanobodies (GFPBooster-ATTO647N, Chromotek) were bath applied to
a final dilution of 1:50,000. Imaging was conducted at a 50-Hz frame rate with 640-nm excita-
tion laser illumination (in TIRF). Molecules fitted with a precision <50 were tracked with
tracking radius of 512 nm and diffusion coefficient determined for tracks >30 frames. A cell
mask was drawn manually to filter out localizations outside neurons due to nonspecifically
bound nanobody. Tracking and estimation of the instantaneous diffusion was performed as
described for the PALM imaging. Synapses were identified based on widefield Homer1c-
mCherry signal as described [85]. Synaptic tracks were defined as tracks in which 80% of the
localizations were located within the border of the synapse. All others were considered extrasy-
naptic. In total, 6 neurons from three independent experiments were analyzed.

Statistics
Statistical significance was tested with a Student � test when comparing two groups. A � value
below 0.05 was considered significant. If multiple groups were compared, statistical signifi-
cance was tested with a one-way ANOVA followed by a Bonferroni’s multiple comparison. In
all figures, � was used to indicate a � value < 0.05, �� for �< 0.01, and ��� for �< 0.001.
Reported � is number of neurons, and each experiment was replicated in neuronal cultures
from at least two independent preparations. Statistical analysis and graphs were prepared in
GraphPad Prism, and figures were generated in Adobe Illustrator CC.

Additional resources
Plasmids from this study will be made available through Addgene (see S5 Table).

Supporting information
S1 Fig. Schematic of knock-in construct design (related to Fig 1). (A and B) Examples of
knock-in construct design for ����� (A) and ���� (B), which contain target sequences in oppo-
site genomic strands. The target sequence is indicated in blue, the PAM sequence is in red, and
the part of the primer used for PCR amplification of the donor DNA is shown in yellow.
Amino acid sequence is shown under the sequences. Asterisk indicates stop codon. Red dotted
lines indicate position of Cas9 cleavage and sites of integration. Purple line indicates restriction
enzyme sites used for cloning into pORANGE. Dlg4, Discs Large MAGUK Scaffold Protein 4;
Gria1, glutamate ionotropic receptor AMPA type subunit 1; ORANGE, Open Resource for the
Application of Neuronal Genome Editing; PAM, protospacer adjacent motif.
(TIF)

S2 Fig. ORANGE CRISPR/Cas9 knock-in library (related to Fig 2). Representative images
of cultured hippocampal knock-in neurons. Examples shown are used for zooms shown in Fig
2D. DIV 21. Asterisk indicates signal enhanced using anti-GFP antibodies (Alexa488 or
Alexa647). Scale bar, 5 �m. GFP, green fluorescent protein; ORANGE, Open Resource for the
Application of Neuronal Genome Editing.
(TIF)
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S4 Table. Genomic PCR primers.
(DOCX)

S5 Table. Overview ORANGE constructs with Addgene IDs. ORANGE, Open Resource for
the Application of Neuronal Genome Editing.
(DOCX)

S1 Data. Raw data.
(XLSX)
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