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Abstract Temperature change aVects many aboveground
and belowground ecosystem processes. Here we investigate
the eVect of a 5°C temperature increase on plant–soil feed-
back. We compare plant species from a temperate climate
region with immigrant plants that originate from warmer
regions and have recently shifted their range polewards. We
tested whether the magnitude of plant–soil feedback is
aVected by ambient temperature and whether the eVect of
temperature diVers between these groups of plant species.
Six European/Eurasian plant species that recently colonized
the Netherlands (non-natives), and six related species
(natives) from the Netherlands were selected. Plant–soil
feedback of these species was determined by comparing
performance in conspeciWc and heterospeciWc soils. In
order to test the eVect of temperature on these plant–soil
feedback interactions, the experiments were performed at
two greenhouse temperatures of 20/15°C and 25/20°C,
respectively. Inoculation with unconditioned soil had the

same eVect on natives and non-natives. However, the eVect
of conspeciWc conditioned soil was negative compared to
heterospeciWc soil for natives, but was positive for non-
natives. In both cases, plant–soil interactions were not
aVected by temperature. Therefore, we conclude that the
temperature component of climate change does not aVect
the direction, or strength of plant–soil feedback, neither for
native nor for non-native plant species. However, as the
non-natives have a more positive soil feedback than
natives, climate warming may introduce new plant species
in temperate regions that have less soil-borne control of
abundance.

Keywords Climate change · Neophyte · Plant–soil 
feedback · Range shift · Warming

Introduction

As a result of global climate change, ecological interactions
between organisms are changing (e.g. Voigt et al. 2003;
Roy et al. 2004; Visser and Both 2005). This is also true for
the interaction between plants and the decomposer commu-
nity in the soil (Walther 2004; Cornelissen et al. 2007). The
soil community, however, does not just consist of the
decomposer community, but also contains organisms that
directly interact with plants, such as mutualists and patho-
gens (Bever 1994; Klironomos 2002; Wardle et al. 2004).
The sensitivity of the interaction between plants and these
groups of soil organisms to temperature changes is cur-
rently unknown.

Feedback eVects between plants, soil organisms and
physical–chemical soil conditions can play a major role in
structuring the composition and dynamics of natural plant
communities (van der Putten et al. 1993; Bever 1994;
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Ehrenfeld et al. 2005). Plants change biotic and abiotic
characteristics of the soil in which they grow. This, in turn,
can aVect the performance of the plants, and this interaction
is known as plant–soil feedback (Bever et al. 1997). Plant–
soil feedback can be positive, through enhanced nutrient
availability or the accumulation of mutualists in the rhizo-
sphere, or negative due to depletion or immobilization
of nutrients, or the accumulation of root herbivores and
soil pathogens (Wardle et al. 2004). Plant–soil feedback
includes direct interactions between plant roots and mutual-
ists, herbivores and pathogens, but also indirect interactions
between plants and decomposer organisms that are respon-
sible for nutrient turnover (Wardle et al. 2004). Although
both types of interactions can be aVected by global warm-
ing, eVects of temperature on indirect interaction-related
pathways have received most attention, especially litter
decomposition (Cornelissen et al. 2007). Decomposition,
soil respiration and mineralization tend to increase with
increasing ambient temperature (Bardgett et al. 1999;
Davidson and Janssens 2006; Bengtson and Bengtsson
2007). Although the eVects of increased temperature on
individual pathogen and mutualist species have been stud-
ied, the resulting eVect of increased temperature on the
interaction between plants and the whole community of
pathogens or mutualists plants are typically exposed to, has
remained largely unresolved. In the present study the eVects
of ambient temperature on interaction between plants and
the soil community as a whole is tested.

The eVect of an ambient temperature increase on plant–
soil feedback is the sum of the eVects on many components
and their interactions. The impact of plant–soil feedback on
plant performance can therefore be positive, negative or
neutral (Klironomos 2002; Kardol et al. 2006). A tempera-
ture increase can change this outcome through changes in
decomposition and mutualistic eVects, but it can also aVect
pathogenic activity. Therefore, it is diYcult to predict the
net eVect of atmospheric temperature on plant–soil feed-
back.

Apart from local eVects of climate warming on commu-
nity composition and dynamics, warming also causes pole-
ward shifts of many plants and other species groups
(Parmesan and Yohe 2003; Tamis et al. 2005; Hickling
et al. 2006). As not all species shift their range at the same
speed, local biotic interactions between plants and other
organisms can become disrupted (van der Putten et al.
2004; Visser et al. 2006). Plants with well-dispersed seeds
can expand their range quite fast (Higgins and Richardson
1999), whereas soil-borne pathogens lack targeted dis-
persal (van der Putten et al. 2001). This may result in a
temporary release from soil-borne enemies of range-
expanding plant species, so called thermophilic neophytes
(Tamis et al. 2005; van Grunsven et al. 2007; van Grunsven
et al. 2010). While release from soil-borne enemies has

been reported for non-native plant species that colonize
new continents (Klironomos 2002; Reinhart et al. 2003),
such eVects of climate warming on local plant–soil interac-
tions have received little attention. Two studies showed
that plant species from warmer climate regions had a less
negative soil feedback in their new range than plants
which are native in that range (van Grunsven et al. 2007;
Engelkes et al. 2008). However, it is not known whether
these plant–soil feedback eVects are sensitive to tempera-
ture and if plants from temperate regions diVer from plants
from warmer climate regions in their soil feedback response
to temperature.

The main question addressed in the present study is how
plant–soil feedback may be aVected by an elevated ambient
temperature and whether warming aVects soil feedback of
native plants and non-native plants diVerently. As a null
hypothesis, we expected no diVerences of warming on
plant–soil feedback. Alternatively, warming can result in a
change in plant–soil feedback, either in a positive or nega-
tive direction. Additionally, we expected plant species from
warm climate regions to beneWt more from a high ambient
temperature than the plants that were native to the temper-
ate zone.

Materials and methods

General setup

The experiment consisted of two parts, a conditioning and a
feedback phase (Fig. 1). In the conditioning phase, plants
were grown in soil inoculated with Weld soil in order to
create speciWc soil communities for each plant species. A
sterilized control was added in order to be able to assess the
eVect of the non-speciWc soil community on biomass
production. The sterilized control soil was discarded after
harvest but the conditioned soil was retained to be used in
the feedback phase of the experiment.

In the feedback phase the conditioned soils were split,
half were used as a conspeciWc conditioned soil, the other
half mixed with soils conditioned by the other species in
this experiment in order to create a non-speciWc control.
The diVerence in biomass production between plants grow-
ing in these two soils is a measure of plant–soil feedback.
Simultaneously with these two treatments, the treatments
from the conditioning phase were repeated using the same
soil and inocula as used in the conditioning phase which
had been stored at low temperature (4°C) during the condi-
tioning phase. This allowed us to assess the eVect of inocu-
lation with non-conditioned soil. In order to test the eVect
of temperature on plant–soil feedback we performed this
whole experiment in four greenhouses; two greenhouses for
each temperature (see below).
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Non-native plant species with a Wrst record in the
Netherlands after 1900 and of European origin were
selected from the standard list of the Dutch Xora (Tamis
et al. 2004). Each plant was paired with a native species
(present before 1500 AD) that has a comparable ecology,
life history, and morphology and is phylogenetically related
(same genus or same family). Many selected species were
rejected for practical reasons (seeds unavailable, parasitic
or aquatic plants, poor germination, no similar native spe-
cies available, etc.). We ended up with six plant pairs from

four diVerent families. We selected two plant pairs from the
families Asteraceae and Chenopodiaceae. These two fami-
lies contain many neophytes in the Dutch Xora (Tamis et al.
2004). The 12 selected species are (non-native/native):
Chenopodium botrys L./Chenopodium polyspermum L.;
Corispermum intermedium Schweigg./Chenopodium album
L.; Eragrostis pilosa (L.) P. Beauv./Poa annua L.; Geranium
lucidum L./G. molle L.; Senecio vernalis Waldst. & Kit./
Senecio vulgaris L. and Tragopogon dubius Scop./T. prat-
ensis L. (Table 1).

Fig. 1 A graphic representation 
of the experimental setup con-
sisting of a conditioning and a 
feedback phase. The feedback 
phase consists of two compari-
sons, one of biomass produced 
in conspeciWc conditioned soil 
versus a mixed, heterospeciWc 
soil and one of biomass pro-
duced in an inoculated versus 
sterilized soil, a repetition of the 
conditioning phase. This is done 
for 12 plant species (six pairs of 
a native and non-native plant 
species) and at two temperatures 
(within four greenhouses)

Table 1 Origin and seed source of the plant species used

a Seeds collected in the Netherlands by us at 51°59N, 4°39E
b B&T Worldseeds, Paguignan, 34210 Aigues-Vives, France. Seeds are collected in Southern France
c Cruydt-hoeck, P.O. Box 88, 9400 AB Assen, the Netherlands. Seeds are collected in the north of the Netherlands
d Seeds collected in the Netherlands by us at 51°53N, 5°39E

Species Pair Invasive in 
other continents

Seed origin First record Native range

Poa annua 1 Yes Collected in NLa Indigenous Europe

Eragrostis pilosa 1 Yes Collected in NLa 1958 Southern Europe

Senecio vulgaris 2 Yes B&T Worldseedsb Indigenous Eastern Europe

Senecio vernalis 2 Unknown Cruydt-hoeckc 1915 Eastern Europe

Tragopogon pratensis 3 Yes Cruydt-hoeck Indigenous Europe and Western Asia

Tragopogon dubius 3 Yes Collected in Austria 1950s Central Europe

Chenopodium album 4 Yes Cruydt-hoeck Indigenous Holarctic

Corispermum intermedium 4 Yes Collected in NLd 1900 Central Europe

Chenopodium polyspermum 5 Yes B&T worldseeds Archeophyte (before 1500) Europe

Chenopodium botrys 5 Yes Collected in NLd 1900–1924 Mediterranean

Geranium molle 6 Yes B&T worldseeds Indigenous Europe

Geranium lucidum 6 Yes B&T worldseeds 1975–1999 Central and Southern Europe
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Conditioning phase

Soils were conditioned by growing plants for 12 weeks in
sterilized soil inoculated with a non-sterile or sterilized
general soil inoculum. This period of 12 weeks is usually
suYcient for the development of plant species-speciWc soil
microbial communities (Bever et al. 1997; Klironomos and
Hart 2002; Kardol et al. 2007). Seeds were collected or pur-
chased from commercial suppliers that collect seeds from
wild plant populations (Table 1). Soil (top layer, 25 cm
deep) was collected from an ex-agricultural grassland in
Wageningen, The Netherlands, where none of the species
that were used in the experiment occurred. This grassland is
relatively rich in plant species, so that it is expected to con-
tain a large collection of soil biota. This soil is sandy with a
clay fraction and relatively little organic matter and a neu-
tral pH. The soil was homogenized and split in two, one
half was sterilized by autoclaving at 121.5°C for 3 h to
serve as a sterilized control, the other half was used as a
non-sterile inoculum source. The mineral sub-soil from the
same grassland was collected and autoclaved (121.5°C for
3 h) to form the bulk soil to which inocula were added
before introducing the plants. This mineral soil was used to
avoid artefacts of autoclaving of soil that is rich in organic
matter. Half of the inocula and substrate was stored at 4°C
for later use.

The sterilized bulk soil was inoculated with the non-
sterilized or sterilized topsoil at a 5:1 (w/w) ratio. Pots of
19 cm diameter and 15 cm height were Wlled with 2,200 g
of the resulting soil mixture (15% moisture w/w). These
pots were planted with seedlings that were germinated in
trays with autoclaved river sand. Each pot was planted
with three similar-sized seedlings of the same species.
The pots were equally distributed over four greenhouses,
two with a 20/15°C (day–night) temperature regime and
two with 25/20°C. The greenhouses had a day/night
vapour pressure deWcit of 0.70/0.51 kPa for both tempera-
tures, resulting in similar evapotranspiration. Philips
SOL-T armatures were used for additional light when nat-
ural light was lower than 800 �mol m¡2 s¡1 between 0600
and 2200 h. We used three randomized complete replicate
blocks per greenhouse, so that the experimental design
consisted of 12 species (six pairs), grown in two soil treat-
ments in four greenhouses (two at low and two at high
temperature) with three replicates per greenhouse and
three plants per pot. This experimental design resulted in
288 pots.

Plants were watered every other day and harvested after
12 weeks of growth. Shoots were dried for 48 h at 70°C and
weighed. In order to prepare the soil for the feedback phase,
coarse roots were removed to prevent re-sprouting, but Wne
roots were left in the soil to serve as inoculum, as most
microbial activity is situated in the rhizosphere. This proce-

dure, therefore, prohibited determination of root biomass.
Soil that had been inoculated with sterilized inoculum was
not used for the feedback phase, because of likely coloniza-
tion by air-borne microorganisms during this growth
period.

Feedback phase

Plant–soil feedback was examined by comparing biomass
production of plants grown in conspeciWc conditioned soil
with plants grown in a mixture of soils conditioned by all
the diVerent species, the latter forming a heterospeciWc con-
trol. The conspeciWc and heterospeciWc soils were prepared
as follows: conditioned soil that originated from non-steril-
ized inocula was collected from each individual pot,
homogenized and split into two parts of 1,000 g. One part
was placed in a new pot serving as conditioned conspeciWc
soil. The other part was mixed with all other conditioned
soils from the same block and then subdivided over individ-
ual pots, serving as heterospeciWc soil. Since there were 12
plant species the speciWc soil community was diluted
12-fold. EVects of the speciWc soil community on plant per-
formance are not detectable if the soil community is diluted
to this degree (van der Putten et al. 1988). Factors such as
decomposition, nutrient uptake and mineralization are aver-
aged by mixing.

Both the conspeciWc and heterospeciWc soils have been
used in the previous growth phase and nutrients have been
taken up by the plants growing in these soils. To correct for
this, nutrients were added to both soils during this growth
phase. From the fourth week until harvest, 25 ml of a nutri-
ent solution (12.5 mmol KNO3 l¡1, 6.50 mmol Ca(NO3)2

l¡1, 3.75 mmol MgSO4 l¡1, 7.50 mmol NH4H2PO4 l¡1,
0.21 mmol FeEDTA l¡1) was added weekly; this is the
amount expected to be taken up by the plants in the condi-
tioning phase.

Additionally, the soil that had been stored in cold storage
during the conditioning phase was used to create inoculated
and sterilized treatments in the same manner as in the con-
ditioning experiment. This allows us to assess the eVect of
inoculation with unconditioned soil simultaneously.

Pots with a diameter of 14 and 13 cm height were Wlled
with 1,000 g of soil. The seeds were treated in the same
manner as in the conditioning phase, with the distinction
that one seedling was planted per pot instead of three. Pots
were placed in randomized complete blocks in the same
greenhouses. As there are 12 plant species, four soil treat-
ments (conspeciWc, heterospeciWc, unconditioned and ster-
ilized), four greenhouses over two temperatures, and three
replicates per greenhouse this resulted in 576 plants. After
12 weeks all plants were harvested, roots were washed to
remove the soil and both root and shoot biomass was dried
at 70°C for 48 h and weighed.
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Data analyses

The conditioning and feedback phases of the experiment
were analysed separately as they were not performed simul-
taneously. For the feedback phase the non-conditioned and
sterilized soils were analysed separately from the conspe-
ciWc and heterospeciWc soil treatment; these treatments test
diVerent hypotheses (eVect of inoculation and plant–soil
feedback, respectively) and both have their own control.
For all three analyses a mixed model was used with bio-
mass as dependent factor (only aboveground for the condi-
tioning phase as roots were not harvested). The eVect of
temperature was tested with greenhouse as a random factor.
In this way the eVect of temperature is tested with green-
houses and not pots as replicates (resulting in two replicates
per temperature). The eVect of plant origin (native or non-
native) was tested with species as error term; species was
entered as a random factor nested within origin. Normality
and homogeneity of variance were assessed by visual
inspection of the residuals, and assumptions for ANOVA
analyses were met. For the interaction between soil inocula-
tion and temperature and the interaction between soil con-
ditioning and temperature, the eVect size (�2) is calculated
as the factor SS/error SS. Root/shoot ratio was calculated
and analysed using the same model as mentioned above.

Additionally, soil feedback was analysed based on total
biomass by calculating the ratio (conspeciWc soil ¡  hetero-
speciWc soil)/heterospeciWc soil. This resulted in a propor-
tional reduction (indicating negative feedback) or increase
(indicating positive feedback) in biomass in conspeciWc soil
compared to the heterospeciWc control. Replicates were
obtained by pairing plant biomass originating from the

conspeciWc and heterospeciWc soil from the same block. As
the residuals were not normally distributed in this analysis,
Mann–Whitney U tests were used to test if the eVect of
feedback was aVected by temperature and/or nativeness.

Pearson correlation coeYcients were used to test for a
relation between biomass production in a pot in the condi-
tioning phase and in the same soil in the feedback phase.

Because this experiment was not designed to test for
eVects within species, we chose to use more species pairs
and less replicates per species. However, we present the
results within species as this allows us to assess which spe-
cies are in line with the general pattern.

Data was analysed using Statistica 7.0 (Statsoft Inc.) and
SPSS 12.03 (SPSS Inc.).

Results

Comparing sterilized soil and non-conditioned inoculum

As the comparison between unconditioned soil and the ster-
ilized control has been performed in the conditioning phase
as well as in the feedback phase, we present the statistics of
both results. There was a signiWcant eVect of inoculation in
the conditioning phase and a similar trend was observed in
the feedback phase (Table 2) However, there was no inter-
action between the eVect of inoculation on biomass produc-
tion and origin or temperature (�2 = 0.002, �2 = 0.004 in the
conditioning and feedback phase, respectively). Despite
diVerences in setup (e.g. pot size), as described in “Materials
and methods”, the results of both conditioning experiments
were remarkably similar (Table 2). Individual species

Table 2 Nested mixed model ANOVA results for the eVect of soil
inoculation (inoc.) with an unconditioned inoculum on aboveground
(Conditioning phase) or total biomass (Feedback phase) and the eVect

of conspeciWc conditioned soil and a heterospeciWc control (a mix of
12 conditioned soils) on total biomass

Temperature (temp.) is tested over greenhouses, and origin (orig.; native or non-native) is tested over species (spec.) 

9 0.1 > P > 0.05, * P < 0.05, *** P < 0.001; not signiWcant (n.s.) P > 0.05

Factor Type df Conditioning phase Feedback phase Conditioned versus mixed

Error df F Sign Error df F Sign df Error df F Sign

Temperature Fixed 1 3.8 6.1 9 2.8 1.4 n.s. 1 3.1 7.872 9
Greenhouse (temp.) Random 2 242 1.1 n.s. 240 4.1 * 2 238 3.376 *

Origin Fixed 1 10 0.1 n.s. 10 0 n.s. 1 10 0.017 n.s.

Spec. (orig.) Random 10 11.7 12.1 *** 12 9.3 *** 10 7.1 29.563 ***

Inoculation Fixed 1 10 7.9 * 10.1 3.5 9 1 10.3 1.499 n.s.

Temp. £ spec. (orig.) Random 10 242 1.8 9 240 1.8 9 10 238 1.975 *

Temp. £ inoc. Fixed 1 242 0.6 n.s. 240 0.9 n.s. 1 238 0.001 n.s.

Temp. £ orig. Fixed 1 10.1 0.2 n.s. 10.2 0.2 n.s. 1 10.1 0.026 n.s.

Orig. £ inoc. Fixed 1 10 1.5 n.s. 10.1 0.6 n.s. 1 10.3 14.157 ***

Spec. (orig.) £ inoc. Random 10 242 5 *** 240 3.5 *** 10 238 0.852 n.s.

Temp. £ orig. £ inoc. Fixed 1 242 0.009 n.s. 240 0.04 n.s. 1 238 0.084 n.s.
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responded diVerently to soil inoculation resulting in a
highly signiWcant interaction between species (origin) and
inoculation in both runs (Fig. 2; Table 2). Some plant spe-
cies produced more biomass in inoculated soils (e.g. Poa
annua in run 1: F1,20 = 11.6, P < 0.001) while other species
produced less biomass in inoculated soil (e.g. Tragopogon
dubius in run 1: F1,20 = 16.4, P = 0.001). Root/shoot ratio
only depended on plant species and was neither aVected by
temperature nor by inoculation (Table 3).

Comparing conspeciWc and heterospeciWc conditioned soil

Temperature had a nearly signiWcant eVect on biomass pro-
duction in the feedback experiment with conspeciWc and

heterospeciWc soil. The eVect of temperature depended on
plant species resulting in a signiWcant temperature £
species(origin) interaction (Table 2; Fig. 3). However, the
eVect of temperature did not diVer signiWcantly between
native and non-native plant species (Table 2). The eVect of
soil conditioning on plant biomass depended on the origin
of the plant species (origin £ inoculation eVect), but the
eVect of soil conditioning did not depend on temperature
(�2 < 0.0001). The native species produced, on average,
10% less biomass in conspeciWc than in heterospeciWc soil
(F1,3.01 = 51.8, P = 0.005). The non-native species, on the
other hand, produced on average 10% more biomass in
conspeciWc than in heterospeciWc conditioned soil (F1,3.00 =
9.6, P = 0.05). Therefore, native plants experienced growth

Fig. 2 Mean (§SD) biomass of 
plants grown with a general 
inoculum or its sterilized control 
at low (20/15°C) or high (25/
20°C) temperatures. Total bio-
mass per pot (Wve individuals) is 
shown. Each panel represents a 
pair consisting of a non-native 
and native plant species
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reduction and non-native plants growth enhancement in
their own soil, independent of the ambient temperature. The
soil feedback eVect, analysed as the relative diVerence
between biomass produced in conspeciWc and heterospe-
ciWc soil, showed similar results. Soil feedback depended
on species origin (Mann–Whitney U = 1731, P = 0.003),
with a more positive eVect for non-native than for native
species. This was not inXuenced by ambient temperature
[Mann–Whitney U = 2091, not signiWcant (n.s.)]. Root/
shoot ratio was again only dependent upon plant-species
and did not depend on temperature or conditioning
(Table 3). In order to check if the eVect of conditioning
may have been due to nutrient depletion, we correlated bio-
mass production in the conditioning phase with biomass
production in the feedback phase in the same soil. There
was no correlation (Pearson R = ¡0.03, n.s.).

The eVects of temperature and soil inoculation per spe-
cies are represented in Table 4. There were few signiWcant

eVects as a result of low power. However, the direction of
the response was similar across species. Increased tempera-
ture had a negative eVect on all species except C. interme-
dium, although this eVect was only signiWcant for T. dubius.
The eVect of the soil inoculation was more variable, posi-
tive in some (higher production in conspeciWc than in heter-
ospeciWc soil) and negative in other species. All native
species showed negative plant soil feedback eVects while
all but one non-native species (E. pilosa) showed positive
eVects.

Discussion

Temperature inXuences virtually all ecosystem processes
(e.g. Bakkenes et al. 2002; Hickling et al. 2006; Brooker
et al. 2007); however, in our study a temperature diVerence
of 5°C did not inXuence net plant–soil feedback. Tempera-
ture did not inXuence plants native to the Netherlands
diVerently from plants originating from a warmer climate
region. Temperature also did not change the eVect of inocu-
lation or conditioning on plant growth. Therefore, we con-
clude that enhancement of atmospheric temperature does
not have a direct eVect on plant–soil feedback patterns. We
are conWdent that this is not a result of lack of power, as the
eVect sizes (as represented by �2) are very small. Growth of
native and non-native species did not diVer during the soil
conditioning phase; only in the feedback phase of the
experiment diVerences in plant biomass were observed.
These results suggest that these two groups of species have
diVerent eVects on the soil community in the conditioning
phase.

In the present study we focused on the temperature as
one aspect of climate change. We did not include changes
in water availability, length of growing season, frequency
of extreme events and direct eVects of increased CO2.
These can all aVect plant–soil interaction (van der Putten
and Peters 1997; Chakraborty and Datta 2003; Ainsworth
and Long 2005; Suttle et al. 2007; Kreyling et al. 2008) and
these eVects may co-vary with increased temperatures.
Therefore, these factors need to be investigated in future
studies for a more complete understanding of the eVects of
climate change.

As micro-organisms tend to be more active at higher
temperatures, their impact on plant performance could
increase with temperature (e.g. Bekal and Becker 2000;
Allen et al. 2005) as has been found for aboveground
pathogens and herbivores (Roy et al. 2004). Opposite
results, i.e. a decreased pathogenic eVect with increased
temperature, have also been reported (Smiley and Uddin
1993; Allen et al. 2005; Matheron and Porchas 2005). It is
important to re-emphasize that plant–soil feedback eVects
are net eVects of many diVerent plant–soil interactions.

Table 3 Root/shoot ratio 

Nested mixed model ANOVA results for unconditioned soil (sterilized
orinoculated) and conditioned soil (con- or heterospeciWc)

Dependent variable is root/shoot ratio (ln transformed). For abbrevia-
tions, see Table 2

Temperature is analysed over greenhouses, and origin (native or non-
native) over species to prevent pseudoreplication

9 0.1 > P > 0.05, ** P < 0.01, *** P < 0.001; n.s. P > 0.05

Factor Type df Error df F Sign

Unconditioned soil

Temperature Fixed 1 3.3 0.1 n.s.

Greenhouse (temp.) Random 2 233 2.1 n.s.

Origin Fixed 1 15.9 0.06 n.s.

Spec. (orig.) Random 10 13.1 31.4 ***

Inoculation Fixed 1 10.1 0.5 n.s.

Temp. £ spec. (orig.) Random 10 233 1.8 9
Temp. £ inoc. Fixed 1 233 0.1 n.s.

Temp. £ orig. Fixed 1 10.0 2.1 n.s.

Orig. £ inoc. Fixed 1 10.1 2.1 n.s.

Spec. (orig.) £ inoc. Random 10 233 1.4 n.s.

Temp. £ orig. £ inoc. Fixed 1 233 1.174 n.s.

Conditioned soil

Temperature Fixed 1 2.6 0.8 n.s.

Greenhouse (temp.) Random 2 235 1.4 n.s.

Origin Fixed 1 10.0 0.3 n.s.

Spec. (orig.) Random 10 3.5 71.0 **

Conditioning Fixed 1 10.3 0.3 n.s.

Temp. £ spec. (orig.) Random 10 235 1.3 n.s.

Temp. £ cond. Fixed 1 235 0.0 n.s.

Temp. £ orig. Fixed 1 10.1 0.0 n.s.

Orig. £ cond. Fixed 1 10.2 2.0 n.s.

Spec. (orig.) £ cond. Random 10 235 0.6 n.s.

Temp. £ orig. £ cond. Fixed 1 235 0.8 n.s.
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Interactions between diVerent components in the rhizo-
sphere community might compensate for the direct eVect of
temperature (e.g. Gavito et al. 2003; Pimkiewicz et al.
2007). We did not measure soil temperature during this
experiment but soil temperatures in greenhouses tend to
follow those of the air, with some time delay, depending on
pot size (S. R. Troelstra and R. Wagenaar, unpublished
results). Considering the volume of the pots used in our
experiment, the air-moisture deWcit and the evaporation, we
expect the diVerence between the two treatments to have
been close to 5°C.

Plants introduced into foreign areas, for instance on
other continents, are known to experience less negative
plant–soil feedback than native species (Klironomos 2002;

Knevel et al. 2004; Reinhart et al. 2005; Reinhart and
Callaway 2006; van Grunsven et al. 2009). The fact that the
same eVect can also occur in plant species that expanded
their range within a continent, e.g. as a result of climate
change, has been acknowledged only recently (van Grunsven
et al. 2007; Engelkes et al. 2008; van Grunsven et al. 2010).
Both inter- and intracontinental range expanders showed
less negative plant–soil feedback than native plant species
in these studies.

The results in our study are in concordance with this; the
native plant species experienced a net negative eVect of
conditioning on biomass production while the non-native
species experienced a (marginally signiWcant) positive
eVect. The non-native plant species have colonized the

Fig. 3 Mean (§SD) biomass of 
plants grown in conditioned con-
speciWc soil or a heterospeciWc 
control at low (20/15°C) or high 
(25/20°C) temperatures. Each 
panel represents a pair consist-
ing of a non-native and a native 
plant species
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Netherlands relatively recently (Table 1). A release from
their speciWc pathogens during the range expansion can
explain the diVerence between native and non-native spe-
cies. Local soil communities have not yet developed patho-
genicity to these exotic plants. The plant–soil feedback
pattern observed in our general analysis (including all plant
species) is reXected by almost all plant species, when tested
separately (Tables 3, 4). Although the trends within the sep-
arate species are rarely signiWcant as a result of low power
and high intraspeciWc variation, the observed trends are in
agreement with the general pattern.

In theory, eVects such as those found in this study could
have been due to changes in abiotic conditions, such as
nutrient depletion in the conditioning phase or increased
nutrient availability in the sterilized control as a result of
autoclaving (Troelstra et al. 2001). Because we used rela-
tively small amounts of sterilized inocula it is unlikely that
this eVect has played a role in the present experiment.
Nutrients were added in order to compensate for possible
species-speciWc diVerences in nutrient uptake during the
conditioning part of the experiment. Biomass production in
the conditioning part, which is strongly correlated with
nutrient uptake, was compared between native and exotic
plant species and did not diVer. A lack of correlation
between the biomass in the Wrst and second phase (e.g. Kardol
et al. 2006), ruled out the possibility that the diVerences in
feedback eVects were due to nutrient depletion. Moreover,
adding soil fauna (De Deyn et al. 2003) or microbial compo-
nents (Kardol et al. 2007; van der Putten et al. 2007) as an
inoculum to sterilized soil has conWrmed the biotic origin of
these soil conditioning eVects in comparable experiments.

In the feedback phase of our experiment we did not use
inoculation but whole conditioned soils. This is in contrast
to a number of other feedback studies (e.g. Bever 1994;
Reinhart et al. 2003). As a control, we used a mixture of
soils conditioned by all plant species in the experiment. The
main advantage of this method is that the disturbance of the

conditioned soil is minimized and it prevents diVerences in
average nutrient content between the two treatments while
creating a non-species-speciWc plant community. We used
soil from a single site, instead of a range of sites, to produce
the soil inocula for the conditioning experiment. Thereby,
we excluded site diVerences in soil community composi-
tion. It is unknown to what extent the selection of this site
has aVected the outcome.

We conclude that the net eVect of plant–soil interactions
appears to be insensitive to increases in ambient temperature.
Reduced negative soil feedbacks of the non-native species
aVect plant performance more than diVerent temperature
eVects on the outcome of plant–soil feedback between native
and non-native plant species. As a result of climate change
many plant species will expand their range into new, previ-
ously colder areas (Bakkenes et al. 2002). This can result in a
large number of non-native plant species that have a reduced
plant–soil feedback compared to native plants. Future studies
should consider how these predicted changes in plant species
composition will inXuence the functioning of invaded eco-
systems. Furthermore, both the role of speciWc soil organisms
in plant–soil interactions and aspects of global climate
change, besides temperature, should be explored.
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