An Exploration of Language Identification Techniques in the Dutch Folktale Database

published in
Proceedings of the Workshop on Adaptation of Language Resources and Tools for Processing Cultural Heritage (LREC 2012)
2012

document version
Peer reviewed version
document license
CC BY

Link to publication in KNAW Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the KNAW public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the KNAW public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
pure@knaw.nl

Download date: 17. Apr. 2024
An Exploration of Language Identification Techniques for the Dutch Folktale Database

Dolf Trieschnigg 1, Djoerd Hiemstra 1, Mariët Theune 1, Franciska de Jong 1, Theo Meder 2

1 University of Twente, Enschede, the Netherlands
2 Meertens Institute, Amsterdam, the Netherlands
{d.trieschnigg, d.hiemstra, m.theune, f.m.g.dejong} @utwente.nl, theo.meder@meertens.knaw.nl

Abstract
The Dutch Folktale Database contains fairy tales, traditional legends, urban legends, and jokes written in a large variety and combination of languages including (Middle and 17th century) Dutch, Frisian and a number of Dutch dialects. In this work we compare a number of approaches to automatic language identification for this collection. We show that in comparison to typical language identification tasks, classification performance for highly similar languages with little training data is low. The studied dataset consisting of over 39,000 documents in 16 languages and dialects is available on request for followup research.

1. Introduction
Since 1994 the Meertens Institute 1 in Amsterdam has been developing the Dutch folktale database, a large collection of folktales in primarily Dutch, Frisian, 17th century and Middle Dutch and a large variety of Dutch dialects (Meder, 2010). It does not only include fairy tales and traditional legends, but also riddles, jokes, contemporary legends and personal narratives. The material has been collected in the 19th, 20th and 21st centuries, and consists of stories from various periods, including the Middle Ages and the Renaissance. The database has an archival and a research function. It preserves an important part of the oral cultural heritage of the Netherlands and can be used for historical and contemporary comparative folk narrative studies. An online version has been available since 2004 2 and currently contains over 41,000 entries.

A rich amount of metadata has been assigned manually to the documents, including language, keywords, proper names and a summary (in standard Dutch). This metadata is very useful for retrieval and analysis, but its manual assignment is a slow and expensive process. As a result, the folktale database grows at a slow rate. The goal of the FACT (Folktales as Classifiable Text) 3 research project is to study methods to automatically annotate and classify folktales. Ideally, these techniques should aid editors of the folktale database and speed-up the annotation process. Language identification is the first challenge being addressed in the FACT project.

In this paper, we compare a number of automatic approaches to language identification for this collection. Based on the performance of these approaches we suggest directions for future work. The Dutch folktale database poses three challenges for automatic language identification. First, the folktales are written in a large number of similar languages. A total of 196 unique language combinations is present in the metadata; 92 unique (unmixed) language names are used 4 . For most of these languages no official spelling is available; the way words are spelled depends on the annotator who transcribed the oral narrative. As a result, documents in the same language may use a different spelling. For our experiments we have used a selection of 16 languages. Second, the language distribution in the collection is skewed: most of the documents are in Frisian and Standard (or modern) Dutch, but there is a long tail of smaller sets of documents in other languages. Consequently, for many languages only little training data is available to train a classifier. Third, documents in the collection can be multilingual. Most of the documents are monolingual, but some contain fragments in a different language. The length of these fragments ranges from a single passage or sentence to multiple paragraphs.

The contributions of this work are twofold. First, we present an analysis of multiple language identification methods on a challenging collection. Second, we make this collection available to the research community.

The overview of this paper is as follows. In Section 2 we briefly discuss related work. In Section 3 we describe the collection in more detail and outline the experimental setup. In Section 4 the results of the different classification methods are discussed followed by a discussion and conclusion in Section 5.

2. Related work
Early work on language learnability dates back to the 1960s (Gold, 1967). Since the 1990s language detection or language identification has become a well-studied natural language processing problem (Baldwin and Lui, 2010). For clean datasets, with only few and clearly separable languages, language identification is considered a solved problem (McNamee, 2005). Recent research indicates, however, that language identification still poses challenging problems (Hughes et al., 2006), including: supporting minority languages, such as the dialects encountered in our collection; open class language identification, in such a way that a classifier is capable of indicating that no language could be accurately determined; support for multilingual documents; and classification at a finer level than the document level. Xia et al. (2009) and Baldwin and Lui (2010) also argue that language identification has not been solved for collections con-
taining large numbers of languages. In this work we will focus on the capability of existing classifiers to deal with minority and very similar languages.

A large array of methods has been developed for tackling the problem of language identification: categorisation based on n-grams (Cavnar and Trenkle, 1994), words or stopwords (Dasmesh, 1995; Johnson, 1993), part-of-speech tags (Grefenstette, 1995), syntactic structure (Lins and Gonçalves, 2004), systems based on markov models (Dunning, 1994), SVMs and string kernel methods (Kruengkrai et al., 2005), and information theoretic similarity measures (Martins and Silva, 2005). An extensive overview of techniques is outside the scope of this paper. A more comprehensive overview can be found in Hughes et al. (2006) and Baldwin and Lui (2010). We limit our experiments to the method by Cavnar and Trenkle (1994) and a number of variations based on n-grams and words motivated by positive experimental results of (Baldwin and Lui, 2010).

3. Experimental setup

In the following subsections we describe the collection, investigated classification methods, and evaluation metrics in detail.

3.1. The collection

The complete folktale database\(^5\) consists of over 41,000 documents. After filtering out documents with offensive content (sexual, racist, lese-majesty, etcetera) and copyrighted materials, 39,510 documents remain. From this collection we put all documents with a mixed language where at least one of the languages is Standard Dutch into a single language group labeled “Standard Dutch mixed”. Documents in a language with fewer than 50 documents in that language in the collection are removed. This results in a collection of 39,003 documents in 16 different languages. Table 1 lists the 16 languages and their document frequencies. Note that the number of documents per language is strongly skewed: 79% of the collection is written in Frisian or Standard Dutch. The remaining 21% of the documents is distributed over the remaining fourteen languages. Also note that in comparison to previous work by Baldwin and Lui (2010), which uses collections between 1500 and 5000 documents, the collection is relatively large.

3.2. Classification methods

As a baseline classification method, we used the TextCat\(^6\) implementation of the algorithm described by Cavnar and Trenkle (1994). The algorithm creates an n-gram profile for each language and performs classification by comparing each of the n-gram profiles to the n-gram profile of the text to classify. An out-of-place distance measure is used to compare the order of n-grams in the profile and the text. Following the methods investigated by Baldwin and Lui (2010) we used a number of classification methods based on nearest neighbour (NN) and nearest prototype (NP) in combination with the cosine similarity metric.

All tested classification methods use a supervised learning approach: classifications are based on a training set of manually labeled examples. The difference between NN and NP methods is the way the examples are stored. In the NP case, the examples of the same class are aggregated into a prototype, a single model representing the class. The prototype is constructed by summing the vectors of the examples. In the NN case, the examples are stored separately. During classification the class(es) of the nearest example(s) is/are returned. In our case we use the class of the first nearest neighbour (or prototype).

The documents are represented by vectors of the unit of analysis, containing the count of that unit. In the case of words, each unique word encountered in the collection forms one dimension of the vector. We use six different units of analysis: overlapping character n-grams of size 1 to 4, a combined representation of n-grams of length 1 to 4, and words (uninterrupted sequences of letters). The text is lowercased and punctuation is removed before features are extracted. The overlapping character n-grams are extracted by sliding a window of n characters over the text one character at a time. In case of the combined n-gram representation, this process is repeated four times (for \(n=1\) to \(n=4\)). To reduce the complexity, we experiment with reducing the vector to a selection of 100, 500 and 1000 features. The selection of features is based on the most frequently used features per language appearing the training set. To be more precise: from each language the most frequent feature is taken until the desired number of features is reached. In our experiments we follow the approach described by Baldwin and Lui (2010). Alternatively, we could have used information gain to select the most informative features. We will consider this in future work.

3.3. Evaluation method

We evaluated the different approaches by means of stratified 10-fold cross-validation: the collection was split into

<table>
<thead>
<tr>
<th>Language</th>
<th>Doc. count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisian</td>
<td>17,347</td>
</tr>
<tr>
<td>Standard Dutch</td>
<td>13,632</td>
</tr>
<tr>
<td>17th century Dutch</td>
<td>2,361</td>
</tr>
<tr>
<td>Standard Dutch mixed</td>
<td>1,538</td>
</tr>
<tr>
<td>Flemish</td>
<td>882</td>
</tr>
<tr>
<td>Gronings(^1)</td>
<td>854</td>
</tr>
<tr>
<td>Noord-Brabants(^1)</td>
<td>677</td>
</tr>
<tr>
<td>Middle Dutch</td>
<td>656</td>
</tr>
<tr>
<td>Liemers(^1)</td>
<td>328</td>
</tr>
<tr>
<td>Waterlands(^1)</td>
<td>153</td>
</tr>
<tr>
<td>Drents(^1)</td>
<td>150</td>
</tr>
<tr>
<td>Gendts(^1)</td>
<td>116</td>
</tr>
<tr>
<td>English</td>
<td>97</td>
</tr>
<tr>
<td>Overijssels(^1)</td>
<td>80</td>
</tr>
<tr>
<td>Zeeuws(^1)</td>
<td>68</td>
</tr>
<tr>
<td>Dordts(^1)</td>
<td>64</td>
</tr>
</tbody>
</table>

Total (16 languages) 39,003

\(^1\) Dutch dialects

Table 1: Collection statistics

\(^5\) As of January 2012

\(^6\) http://www.let.rug.nl/vannoord/TextCat
Table 2: Per-language classification performance for TextCat, sorted by descending F-score

<table>
<thead>
<tr>
<th>Language</th>
<th>Precision</th>
<th>Recall</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisian</td>
<td>0.999</td>
<td>0.976</td>
<td>0.987</td>
</tr>
<tr>
<td>17th century Dutch</td>
<td>0.983</td>
<td>0.978</td>
<td>0.980</td>
</tr>
<tr>
<td>Middle Dutch</td>
<td>0.952</td>
<td>0.974</td>
<td>0.963</td>
</tr>
<tr>
<td>Liemers</td>
<td>0.861</td>
<td>0.909</td>
<td>0.884</td>
</tr>
<tr>
<td>Gronings</td>
<td>0.882</td>
<td>0.785</td>
<td>0.830</td>
</tr>
<tr>
<td>Standard Dutch</td>
<td>0.879</td>
<td>0.633</td>
<td>0.736</td>
</tr>
<tr>
<td>Gendts</td>
<td>0.942</td>
<td>0.560</td>
<td>0.703</td>
</tr>
<tr>
<td>Noord-Brabants</td>
<td>0.331</td>
<td>0.558</td>
<td>0.415</td>
</tr>
<tr>
<td>Zeeuws</td>
<td>0.692</td>
<td>0.265</td>
<td>0.383</td>
</tr>
<tr>
<td>Flemish</td>
<td>0.229</td>
<td>0.810</td>
<td>0.357</td>
</tr>
<tr>
<td>Dordts</td>
<td>0.207</td>
<td>0.609</td>
<td>0.310</td>
</tr>
<tr>
<td>Drents</td>
<td>0.196</td>
<td>0.707</td>
<td>0.307</td>
</tr>
<tr>
<td>English</td>
<td>0.112</td>
<td>0.887</td>
<td>0.199</td>
</tr>
<tr>
<td>Waterlands</td>
<td>0.091</td>
<td>0.824</td>
<td>0.163</td>
</tr>
<tr>
<td>Standard Dutch mixed</td>
<td>0.259</td>
<td>0.088</td>
<td>0.131</td>
</tr>
<tr>
<td>Overijssels</td>
<td>0.055</td>
<td>0.250</td>
<td>0.090</td>
</tr>
<tr>
<td>Macro average</td>
<td>0.542</td>
<td>0.676</td>
<td>0.527</td>
</tr>
<tr>
<td>Micro average</td>
<td>0.799</td>
<td>0.799</td>
<td>0.799</td>
</tr>
</tbody>
</table>

4. Results

4.1. TextCat baseline

Table 2 lists the classification performance of TextCat for the 16 languages in the collection. The contingency table in table 3 provides further information about the classification errors made. Its rows list the actual classes where its columns indicate the predicted classes indicated by the system. For example, the second row and first column indicates that 6 documents in Standard Dutch were incorrectly classified by TextCat as Frisian.

We can make the following observations. First, the classification performance of the largest language class (Frisian) is very good. The recall is very high (0.98) at almost perfect precision (0.999). Second, the classification performance of old Dutch languages (17th century Dutch and Middle Dutch) is also good (F-measure larger than 0.96). These languages can be distinguished well from modern Dutch and dialects. Third, the classification performance of the dialects is mixed. Some (Liemers, Gronings) perform relatively well, others (Waterlands, Overijssels) perform poorly. Still the highest F-measure (0.88) does not come close to typical performance scores, which range between 0.91 and 0.99 for the EuroGOV collection (Baldwin and Lui, 2010). Most of the dialects are mistaken for Standard Dutch and vice versa. Gronings shows strong overlap with Drents (both northern dialects); Zeeuws is frequently mistaken for Noord-Brabants, but not the other way around (both southern dialects). Fourth, it is striking that classification of English documents is so poor. Table 3 indicates that Standard Dutch and Standard Dutch mixed is frequently mistaken for English. One possible explanation is that English words or expressions are frequently borrowed in Dutch. It could also indicate that the annotation in the collection is inconsistent: the (Dutch) document contains an English expression but has been classified as Standard Dutch instead of Standard Dutch mixed.

The micro average performance score (see Table 2) indicates a reasonable classification performance of TextCat, but this value has been strongly influenced by the strong performance on the largest language class. The macro averages illustrate that for many smaller languages classification performance is low. Figure 1 shows a scatter plot of the amount of training data available for a language and its classification score.

4.2. Variations of cosine distance

Table 4 summarises the classification performance of a number of variations on language identification systems. TextCat can be viewed as a variation of a nearest prototype method (in terms of F-measure). All the nearest prototype variants based on cosine perform worse.
The nearest neighbour cosine variants perform similar or better than TextCat in terms of micro and macro F-measure. It should be noted, however, that these nearest neighbour approaches are far more expensive in terms of processing time and required storage than the method implemented by TextCat. Second, the cosine variants perform better with longer representations (longer n-gram windows or words) and with more features. Using all features performs best, but the selection of 1000 features closely approximates the scores based on all features. Figure 2 illustrates the differ-

Table 3: Contingency matrix for TextCat

<table>
<thead>
<tr>
<th>Character</th>
<th># Features</th>
<th>Nearest prototype</th>
<th>Nearest neighbour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Character</td>
<td>Precision</td>
</tr>
<tr>
<td>TextCat</td>
<td></td>
<td></td>
<td>0.542</td>
</tr>
<tr>
<td>Cosine</td>
<td>n = 1</td>
<td>all (59)</td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td>n = 2</td>
<td>100</td>
<td>0.356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all (1,630)</td>
<td>0.406</td>
</tr>
<tr>
<td></td>
<td>n = 3</td>
<td>100</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.484</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all (17,894)</td>
<td>0.503</td>
</tr>
<tr>
<td></td>
<td>n = 4</td>
<td>100</td>
<td>0.309</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all (112,419)</td>
<td>0.403</td>
</tr>
<tr>
<td></td>
<td>n = 1...4</td>
<td>100</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.372</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all (132,002)</td>
<td>0.400</td>
</tr>
<tr>
<td></td>
<td>words</td>
<td>100</td>
<td>0.369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>0.326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.366</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all (174,180)</td>
<td>0.373</td>
</tr>
</tbody>
</table>

Table 4: Classification performance of evaluated systems
ence between TextCat and the (NN) Cosine distance with
word features: Cosine performs better on all languages, ex-
cept Middle and 17th century Dutch, and Gronings.

5. Conclusions and future work
In this work we have investigated a number of language
identification methods on a new and large collection of
folktales in a variety and mix of languages. In compari-
sion to other nearest prototype methods, the approach based
on mixed n-grams proposed by Cavnar and Trenkle (1994)
performs well. The results showed that a nearest neighbour
approach using longer and more features performs even
better.

Compared to other language identification tasks carried out
by Baldwin and Lui (2010), the classification results stay
behind. Baldwin and Lui (2010) report a maximum macro
F-measure of 0.729 for a skewed collection containing 67
languages. With similar methods, we achieve only 0.630,
for a collection with fewer languages. These results indi-
cate that this collection indeed poses a challenge for lan-
guage identification. The collection therefore is a valuable
resource for future language identification research. The
collection is available on request (users are required to sign
a license agreement).

An important note has to be made on the consistency of
the language annotations in the collections. The folktales
in the database have been gathered and annotated (in a free
text field) by more than 50 people. It is an open question
whether these editors have used the same method for la-
belling the language of a document; some might have an-
notated a document with Standard Dutch, where another
would have labeled it as a mix of Standard Dutch and
another language. This might explain why the automatic
methods cannot discriminate between these classes.

Our future work will focus on the following aspects of
language identification. First, we intend to focus on mul-
tilingual document detection. Almost 10% of the doc-
uments in the complete collection contains multiple lan-
guages. Therefore, it would be useful to detect languages
at the sentence level. Second, it would be useful to assign
a level of certainty to the detected language. In the work
described in this paper we view the task as a closed classi-
fication problem with a fixed number of languages. Espe-
cially for the long tail of documents in minority languages
it would be useful to indicate if no known language was
confidently determined. Third, since the language identi-
fication system is intended to be used in a semi-automatic
setting, it is useful to have a mechanism to present proof
for the detected language. Especially when the annota-
tor has no in-depth knowledge of the different languages
this would be useful. This could be achieved, for exam-
ple, by showing sentences from the suggested language(s)
similar to the sentence under classification. Fourth and fi-
nally, since classification performance is still relatively low,
we intend to investigate how contextual information can be
used to improve classification performance. In the line of
recent work from Carter et al. (2013), who improved the
language identification of Twitter messages by incorporat-
ing classification features based on for example language
of the blogger and language of the document linked to, we
could introduce additional features for this particular do-
main. One can think of features based on the date, source,
and place of narrative of the folktale. Or a feature based on
the geographical locations encountered in the text. In ad-
dition, it might be possible to incorporate knowledge from
dialect lexicons to improve classification.

6. Acknowledgements
This work has been carried out within the Folktales as Clas-
sifiable Texts (FACT) project, which is part of the CATCH
programme funded by the Netherlands Organisation for
Scientific Research (NWO).

7. References
T. Baldwin and M. Lui. 2010. Language identification: The long
and the short of the matter. In Human Language Technologies:
The 2010 Annual Conference of the North American Chapter
of the ACL, pages 229—237, Los Angeles, California, USA.
language identification: Overcoming the limitations of short,
unedited and idiomatic text. Language Resources and Evalua-
W.B. Cavnar and J.M. Trenkle. 1994. N-gram-based text catego-
rization. In Proceedings of the Third Symposium on Document
Analysis and Information Retrieval, Las Vegas, USA.
M. Damashek. 1995. Gauging similarity with n-grams:
Language-independent categorization of text. Science,
267(5199):843.
ing Research Laboratory Technical Memo M CCS,
pages 94–273.
E.M. Gold. 1967. Language identification in the limit. Informa-
tion and control, 10(5):447–474.
schemes. In JADT 1995, 3rd International Conference on Sta-
tistical Analysis of Textual Data, Rome, Italy.
B. Hughes, T. Baldwin, S. Bird, J. Nicholson, and A. MacKin-
lay. 2006. Reconsidering language identification for written
language resources. In Proc. International Conference on Lan-
guage Resources and Evaluation, pages 485–488.
Technical report, Technical report, School of Computer
Studies, University of Leeds.
C. Kruengkrai, P. Srichaiwattana, V. Sornlertlamvanich,
and H. Isahara. 2005. Language identification based on string ker-
ISCIT 2005. IEEE International Symposium on, volume 2,
pages 926–929. IEEE.
R.D. Lins and P. Gonçalves. 2004. Automatic language identifi-
cation of written texts. In Proceedings of the 2004 ACM sym-
posium on Applied computing, pages 1128–1133. ACM.
computing, pages 764–768. ACM.
suitable for undergraduate instruction. J. Comput. Small Coll.,
T. Meder. 2010. From a Dutch folktale database towards an inter-
F. Xia, W.D. Lewis, and H. Poon. 2009. Language id in the con-
text of harvesting language data off the web. In Proceedings
of the 12th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 870–878. Associa-
tion for Computational Linguistics.