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Abstract

Parents have to assess the multivariate charaaterd their reproductive sites to
maximize their reproductive success through offgpperformance. In addition, they
may provide care to ensure optimal performancéeaif bffspring. In poison frogs it
has been identified that ecological characterigtfagproductive sites may underlie
transitions in the involvement of parental sexesare for offspring. To elucidate the
ecological factors that may drive these transitignis important to understand which
characteristics poison frogs use to assess thayjobtheir reproductive site. We
studied the use of small water bodies in leaf adilsromeliads, phytotelmata, for egg
and tadpole deposition by Amazon poison frdgan(tomeya amazonica). We
compared phytotelm quality characteristics for @nefd egg and tadpole deposition
sites and used two choice tests with plastic copsudy the causal relationship with
tadpole deposition for the identified charactecstiThe differences among quality
characteristics of deposition sites were largesiragybromeliad species, and for egg
or tadpole deposition different bromeliad speciesenpreferred. However, males
were also selective in the leaf axils within a bediad species that they used for egg
or tadpole deposition. Eggs were deposited in smegburce limited water bodies
that were close to the forest floor. Tadpoles vekgosited in leaf axils holding
resource-rich phytotelmata with larger water volsnfereference of detritus
containing water over clear water in choice testdicmed that Amazon poison frogs
assess quality of their tadpole deposition siteod availability. We conclude that
preference for large water volume and resourcepigltotelmata plays an important
role in determining male involvement in parentakcand speculate that distribution
of preferred resources may bring about selectiofeprale involvement in parental

care.
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Introduction

Divergence in reproductive strategies of organibassintrigued biologists for
centuries. The most elaborate reproductive strasegyie found in vertebrates which
parents invest in the quality of few offspring bhywiding nourishment, protection or
other types of parental care (Trivers 1972; CluBoack 1991). What determines
whether a parent is involved in providing care it brings about transitions in the
mode of parental care of a species are centratiqnesn evolutionary ecology. The
primary driving forces behind the involvement okarf the sexes in parental care are
their initial investment in gamete size, the caerthaof paternity, the chances of
leaving offspring first (for example by the ordérgamete release), and the balance
between deserting and caring in terms of fitneas lgya additional mating versus loss
of offspring when leaving the current brood (Trivé©72; Dawkins and Carlisle

1976; Clutton-Brock 1991). Although most of thebkaracteristics and thus mode of
parental care are strongly defined by the ancestaéd of a species, ecological factors
may drive transitions in modes of parental caréodoyxample shaping the costs of
deserting offspring. Although ecological factore abw considered capable of
bringing about fast transitions of complex spetiags (West-Eberhard 2003), few
studies have provided empirical evidence of a daesationship between an
ecological parameter and a transition in a modeaoéntal care (but see Johnson et al
2007 for an example).

How ecological parameters may drive reproductiv@siiens is well studied in
insects that use distinct resources for the dewedop of their offspring (Mayhew
1997). Many insect species desert their offspripgnulaying eggs and confine their
offspring to a food source such as a single fruftuit flies (Mock and Parker 1997),

a caterpillar host in parasitic wasps (Godfray 19%drvey et al 2013) or a small body
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of water in a tree hole for damselflies (Fincke 499 he success of development of
offspring in such distinct resources depends onyneanlogical factors such as the
guantity, quality and stability of the food souaewell as the risk of predation and
competition (Fincke 1994; Lehtinen 2004; Refsnigled Janzen 2010; Harvey et al
2013). This implies that mothers need to assessithievariate quality characteristics
of a distinct resource and adapt their oviposistrategy to this information. Factors
shaping oviposition decisions may be hierarchicdhgeir effect size, for example
predator avoidance may be prioritized above avaidari competition or preference
for pool size. The hierarchy may depend on theatian in the quality characteristic a
female can choose from and the associated variaticgproductive success for a
female making her choice based on the quality cbaragtic (Crump 1991). Each of
these ecological factors could potentially driv&hit in reproductive decisions that
may include decisions on parental investment iglsionffspring (Ekbom and Popov
2004).

Interestingly, Neotropical poison frogs (Dendrolh@d¢a) have both the use of
distinct resources and parental care combinedein taproductive biology, offering a
system in which ecological parameters can be siudietheir effect on transition of
modes of parental care. Some clades of poison fregsmall water bodies in leaf
axils or tree holes, i.e. phytotelmata (Kitchind@l) as rearing sites for their tadpoles
(Summers and McKeon 2004). These phytotelmataiati@ct resources that may
vary in water volume, nutrient composition, stapiand risk of competition or
predation (Lehtinen 2004). Phytotelm volumes maoycslly be in the range of a few
milliliters to less than 100mL (Kitching 2000). Aexved state of parental care in
poison frogs is that males care for the egg clatwh transport tadpoles on their back

to deposit them individually in phytotelmata (Sunmmet al 1999). Similar to larvae
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of solitary parasitic wasps that develop individpaiside caterpillars and kill other
parasitoid larvae that share the caterpillar (Godfr994; Harvey et al 2013), the
tadpoles are cannibalistic and a single phytotelmygeld only a single offspring at a
time (Summers and Amos 1997; Summers and Symulg, Faselman and Dicke
2007). Males have been shown to be discriminatvelifferent characteristics of the
phytotelm such as preference for a certain volumegght of the phytotelm above the
forest floor or avoidance of competition and prezfa{fDownie et al 2001; Brown et
al 2008a,b; von May et al 2009a; Ryan and Barryl20hterestingly, female
involvement in parental care has evolved in paradi¢he use of smaller more
resource limited phytotelmata (Brown et al 2010)séveral lineages this has resulted
in species that exhibit bi-parental care or uniepgal female care in which females
provision their offspring with nutritive eggs (Weyldt 1980; Caldwell 1997;
Caldwell and de Oliveira 1999; Summers et al 1998muk and Hiler 1999).
Although water volume may correlate with the moélparental care, little is known
about the characteristics of phytotelmata thatgofsogs use to assess the quality of
the pool and that determines their type of carené&studies have reported on the
water volume preferences and avoidance of canstirationspecific tadpoles in
separate tests (Schulte et al 2011), few studies éaaluated which of these
characteristics most likely explains reproductiite shoice by poison frogs.
Moreover, most comparisons have been made acrosgebad species, not looking at
preference for phytotelmata within single bromeka@cies and thereby cannot rule
out that poison frogs choose for reproduction iriate bromeliad species rather than
choosing for a certain qualitative trait.

We studied phytotelm use for oviposition and tadpmi#position by Amazon

poison frogs Ranitomeya amazonica) under rainy season conditions. We compared



130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

phytotelm quality characteristics for preferred @ggl tadpole deposition sites. We
specifically addressed whether preference for ghirtata byR. amazonica differs

for egg and tadpole deposition, and what are tlgelying characteristics of the
preferred phytotelmata in each context. For dejwsdf eggs, we hypothesized no
preference for nutrients and water volume sincedsyglopment takes on average
only 14 days and needs a moist environment. Sadgoles oR. amazonica require
about three months of development before the metamaan leave the phytotelm
they were deposited in (Poelman and Dicke 2007 hypothesized that tadpoles
would be deposited in phytotelmata that have nedfitilarge water volumes that are
less likely to desiccate. Furthermore, these psiotaild offer tadpoles a stable food
source for that length of time and therefore shdaddich in detritus and have a high
algal growth. The characteristics that were founddrrelate with deposition
preferences were studied in two-choice tests fair tausal relationship. We discuss
the implications of differences in egg and tadmEposition sites for the reproductive

ecology and evolution of parental care in poisag$t

Material and Methods

Sudy sites

The field study was conducted during two field sess(10 April — 27 July 2002 and
2 April — 28 April 2008) at three sites in Frenchi@a. The weather conditions at
these sites are characterized by seasonal rawithlla dry period from the end of July
until mid-November (Grimaldi and Riéra 2001). Twithee study sites are located in
the Nouragues Nature Reserve (4°05 N, 52°41 W) fif$teand main study site,

“Inselberg”, is situated on top of a granite oufcAdl 1l meters above sea level. The
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patches of forest, of up to a few hundred squaremmé size are dominated by trees
of the genu<£lusia and are separated by bare granite rock. The brachebtmmunity
at this site is dominated by the epiphy@iatopsis berteroniana and the two terrestrial
bromeliadsPitcairnia geykessi andAechmea aquilega (see Sarthou 2001 for a
detailed description of the study area). The secbody site “Campsite” was situated
near the campsite of Nouragues. Here a semi-ndtabalat is formed by patches of
diverse bromeliad species that have been colldotagsearch purpose and attached
to trees around the campsite (see Poelman and [(#0K&) for the genera of
bromeliads found here). The third study site “Erttedaingle Village” was located in
the primary forest behind the lodge at Emerald [luNglage (4°48N, 52°22 W).

Here a semi-natural habitat is formed by a largeape collection of bromeliads. The
two semi-natural sites were only used for experisien tadpole deposition

preference oR. amazonica based on two-choice tests with plastic cups.

Sudy species

Amazon poison frogdRanitomeya amazonica (Brown et al 2011)Ranitomeya
ventrimaculata sensu Grant et al 2006 andendrobates ventrimacul atus sensu Shreve
1935, the latter name we used in former reportderpopulations studied here
(Poelman and Dicke 2007, 2008)) (Fig. 1), belong tmmplex of closely related
species that can be found from the Guyana Shiebdi¢gfh the Amazon basin of Brazil
into the East Andean lowlands of Colombia, Ecuadond Peru (Brown et al 2011).
Males are territorial and both males and femalesbeafound around bromeliads or
other plants that hold phytotelmata in their leafsa(Heliconia and aroids) (Poelman
and Dicke 2008). The clutch of 1 up to 6 eggsit ¢en the edge of the phytotelm

partly submerged below the water line. Here werrefegg laying in a phytotelm as
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oviposition. Tadpoles that hatch are transportegl@rtwo at the time on the back of
the male and are deposited in other phytotelmagal{ter and Lescure 1982;
Summers and Amos 1997; Poelman and Dicke 2007% tHertadpoles feed on
detritus, algae and cannibalize on conspecific @ggadpoles. Metamorphosis takes
place after three months (Poelman and Dicke 200ane of the six other species of
Dendrobatoidae present in French Guidbendrobates tinctorius, Ameerega hahneli,
Allobates femoralis, Allobates granti, Anomal oglossus baeobatrachus, and
Anomaloglossus degranvillei (Born and Gaucher 2001; Kok et al 2006), use amil

phytotelmata aR. amazonica.

Assessing phytotelm quality

To determine whethd®. amazonica prefers certain bromeliad species for
reproduction, we counted the number of bromeliadstheir number of phytotelmata
for the most common bromeliad speci€stppsis berteroniana, Aechmea aquilega,
Pitcairnia geykessi) on nine forest patches located on the naturdlyssite

“Inselberg”. Over the study period in 2002, theenpatches of a 100%each were
visited in series of three consecutive days folldwg a day without observations. We
monitored all leaf axils for the presence of eggtadpoles and noted the bromeliad
species for each encounter.

In 2008 at Inselberg, we studied which qualitatiiaracteristics make
phytotelmata or the leaf axils that hold them pmefe for oviposition or tadpole
deposition. To determine the characteristics cdvarage leaf axil and its phytotelm
of C. berteroniana andA. aquilega, we non-selectively sampled a single leaf axil, in
which no eggs or tadpoles were found, of fourtyntebads for each of the two

bromeliad species. We also searched for leaf akils berteroniana andA. aquilega



205 that contained eggs or tadpoles by visually ingpggihytotelmata. For each of the
206 leaf axils that had received oviposition, tadpaeakition and those that were non-
207 selectively sampled and not in use for reproductvermeasured 17 characteristics
208 (Fig. 2): the bromeliad species (1), the heighthefbromeliad above the forest floor
209 (2), the geographic orientation of the leaf ax)l (Be number of leaf rosettes of the
210 bromeliad (4), the leaf rosette the axil is par¢®f the width of the leaf axil (6), the
211 depth of the leaf axil (7), the water volume of gigtotelm (8). The water quality of
212 the phytotelm was measured for its temperaturegpfd)10), K in mol/m? (11), NG
213 - NO7 in mg/l (12) and phosphate FOin mg/l (13). The phytotelm was examined
214 for the presence and amount of detritus (14) tleas@ored on a scale of 0 to 5 and the
215 presence of algal growth (15) that we scored aredesof O to 3. On both scales a 0
216 means absence of the characteristic (detritusgait growth). For detritus we defined
217 1-5 by rating how murky the water of the phytotlems after the water was extracted
218 from the leaf axil and gently shaken in a plastat.WVe rated each water sample for
219 transparency (1 = 20%, 2 = 40%, 3 = 60%, 4 =80% wimaximum of 5 (100%

220 murky, non-transparent)). Algal growth was deterdiby visually inspecting the

221 leaf axil for presence of algae. Leaf axils thateweovered for up to 1/3 with algae
222 were scored as 1, 2/3 as 2 and fully covered sase& Furthermore, we counted the
223 number of insect larvae (16) and tadpoles of atpecies (17) present in the

224  phytotelm. Height of bromeliads above the forespflwas measured to the nearest
225 centimeter using a tape measure and all othensgasurements were taken with dial
226 calipers to the nearest millimeter. The leaf resetvere counted as estimate of

227 bromeliad size by counting from the center of ttep increasing number to the

228 outer rosettes (Fig. 2). The position of the meadleaf axil within the bromeliad

229 was calculated as the rosette number it was palitvafed by the total number of

10



230 rosettes of that bromeliad. The geographic orieamtaif the leaf axil was assessed
231 using the degrees derived from the north as poioyesl compass that was held above
232 the bromeliad. The geographic orientation was cdstpinto eight segments of the
233 360 degree circle (Fig. 2). Position and geographentation of the leaf axils were
234 assessed because we hypothesized that bromeliadid beoheterogeneous in their
235 axil quality, and that across individual bromelidlds distribution of leaf axil quality
236 may be similar when caused by the amount of sunt bgexposure to wind. Water
237 volume was assessed by extracting the water frenetif axil with a 50-ml syringe.
238 Water temperature was measured using a digitainireter (Checktemp 1 Pocket
239 Thermometer, Hanna Instruments BV). We used indidatsts for pH (Duotest pH
240 3.5-6.8 and 7.0-10.0, Macherey-Nagel), K+ (Aquadidr5 mol/ni, Macherey-Nagel),
241 NOs - NO; (Quantofix Nitrate 10-500 mg/I Nitrite 1-80 mg/l,adherey-Nagel) and
242 PO (Quantofix Phosphat(e) 3-100 mg/l, Macherey-Nagel)

243

244  Two choice experiments

245 We experimentally tested whether water volume es@nce of detritus affected

246 tadpole deposition preferenceRfamazonica. At the start of our field season in 2008,
247 we attached two-choice tests consisting of a dgutastic coffee cups to bromeliads
248 at the three study sites. The plastic cups weresegto natural tadpole deposition by
249  Amazon poison frogs for three weeks and were mogdtaveekly for the presence of
250 tadpoles. We tested whether water volume affectdgddle deposition by offering a
251 cup with 10 ml paired to a cup containing 50 ml.&Wter detritus of leaf litter

252 affected tadpole deposition, was tested with pattgas of similar water volume (50
253 ml). One cup contained collected rain water orilg, dther cup contained water with

254  small pieces of leaf litter with a summed size aih#. Water levels were kept at their

11



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

volume by puncturing a hole in the plastic cup foattioned as drain for excessive
water and the daily rainfall kept water levelsha thaximum holding capacity of the
drained cups. At each study site 20 paired cugsmolh of the two tests were offered

with a minimum distance of ten meters between pdicips.

Satistical analyses

To test whether certain bromeliad species wereemed byR. amazonica for egg or
tadpole deposition, we counted the number of egigt@ipole depositions found in
the three bromeliad species. We used chi-squarettetest whether the observed
distribution differed from an expected distributiohthe availability of phytotelmata
of the three bromeliads in the study site as asgd®g counting. Differences in the
multivariate characteristics of the two bromelipgdes, and differences among non-
selectively sampled leaf axils and those useR.lamazonica for egg or tadpole
deposition were analyzed using redundancy analiRfd\). We used this constrained
multivariate ordination analysis to seek the leaf @éharacteristics that best predicted
the difference among bromeliads, or use for reprodn by R. amazonica.
Characteristics were evaluated for their signife&nsing forward selection and
Monte Carlo Permutation tests (999 tests). Towdstther eggs were deposited more
frequently in a specific geographic orientatioresf axils we used a Mann-Whitney
U test, because most of the eight segments recéaweat than 5 ovipositions so that
our data did not meet the test requirements ogghare. We compared the scores on
the geographic eight segments of the bromeliad grteaf axils that had received
oviposition with those that were randomly selec@ad were not in use as offspring

rearing site byR. amazonica. We used a binomial test to analyze the two-chastst

12
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with paired plastic cups. RDA analysis was perfatmgh CANOCO for Windows

4.5, all other tests were performed in IBM SPSSiSies 19.

Results

In the nine study plots on Inselberg, the bromeRedairnia geykess was the most
abundant oveCatopsis berteroniana and the uncommofechmea aquilega. The leaf
axils of P. geykessi often contained very small to no phytotelmata &echever found
eggs or tadpoles depositedAngeykessi leaf axils (Figure 3). During the four months
of study in 2002, we found 137 clutches of eggs Wexe almost exclusively
deposited in leaf axils &. berteroniana that received more oviposition events than
expected by the relative abundance of these lélaf @x the study plotsX? = 10425.9,
P <0.001) (Fig. 3). Of the 106 tadpoles foundf bthem were deposited in
phytotlemata o€C. berteroinana and the other half iA. aquilega. Even thougtA.
aquilega was absent from many of the study plots and made territories (Poelman
and Dicke 2008), tadpoles were more frequently diégpd in phytotelmata o.
aquilega than expected from the low availability of theaggole deposition siteXt
=10490.4, P < 0.001) (Fig. 3).

The two bromeliad species differed widely in thaiaracteristics as identified
with RDA (first PC explained 78%, Fig. 4@echmea aquilega is a terrestrial species
that has on average 7 leaf rosettes with over &0abels per bromeliad. These leaf
axils are deeper, wider and contain eight timesash water compared to the smaller
C. berteroniana (80 and 10 ml respectively) (Table 1, Fig. 42gtopsis berteroniana
is an epiphytic bromeliad that can be found clasthé forest floor up to two meters
high in theClusia trees. It has 4-5 leaf rosettes holding aboutmi&lisphytotelmata.

The water temperature and composition of K+sNMO,; and PQ@* was similar for
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both species. PhytotelmataAfaquilega contained more detritus, but fewer mosquito
or other insect larvae than phytotelmat&oberteroniana.

In 2008, we found 24 leaf axils &f berteroniana that contained eggs &t
amazonica and 7 that contained a freshly hatched tadpoledéstified from
significant correlation of the bromeliad charadtciin RDA comparison among leaf
axils that received eggs and non-selectively sathlelaf axils, leaf axils that had
received oviposition were smaller and had lowerwablume than the average leaf
axil of aC. berteroniana plant (first PC explained 92%, Fig. 4b). Thesd &dls
were generally in the outer rosettes of bromelthds were growing close to the
forest floor. Moreover, egg clutches were founthéadeposited more frequently in
leaf axils that were directed to the geographidtstiuan our random set of leaf axils
of C. berteroniana (Mann Whitney U-test, Z = -2.546, P = 0.011) (Y. In RDA of
a comparison among random leaf axils and thoge aduilega that had received
tadpole deposition none of the leaf axil charastes correlated significantly with the
Principle Components (PC).

Because\. aquilega was preferentially used for deposition of tadp@ied
phytotelmata of this bromeliad are typically holgliarger phytotelmata that are
richer of detritus than leaf axils @f berteroniana, we studied these two
characteristics in tadpole deposition preferenstsid he paired cups consisting of
one holding a small water volume (10ml) and onédnaitarge water volume (50ml)
received only five tadpole depositions that weked#id with 2 and 3 over the
treatments. These observations were too few ftisstal analysis, and give no
indication on a preference for water volume of phstimata byR. amazonica. The
pairs of cups that had similar water volume buttoch detritus was added in one

cup received 14 tadpoles, summed for the three Sitels.Ranitomeya amazonica
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males preferentially deposited their tadpoles ipsdinat had received detritus

(Binomial test, P = 0.013) (Fig. 6).

Discussion

Amazon poison frogs use different characteristideaf axils to assess their
suitability as deposition site for eggs or tadpold®e differences among quality
characteristics of deposition sites were strongesing bromeliad species largely
partitioning egg and tadpole deposition over braagespecies. However, males were
also selective about the leaf axils within a braatekpecies that they used for egg or
tadpole deposition. Eggs were deposited in smeburce limited water bodies that
were close to the forest floor. Tadpoles were diépdsn leaf axils holding
phytotelmata that are resource rich and have lavgégr volume.

Only few poison frog species use phytotelmatafiih egg and tadpole
deposition. Most of the other poison frogs lay tlegigs in leaf litter on the forest
floor and eggs are kept moist by one of the par@usimers et al 1999). Terrestrial
egg deposition has been hypothesized to be aneeszdipe many aquatic predators as
compared to a lower predation risk of eggs on @xdlls 1981). The use of the
smallest phytotelmata for egg depositionfbyamazonica in our study and avoidance
of insect larvae, may suggest that also this spesgkects egg deposition sites that
have low predation risk. Since eggs are partly ®riged below the water line in
phytotelmata, significant mortality may be causgabuatic predators that include
conspecific tadpoles (Summers and Amos 1997; Paelnd Dicke 2007). The
presence of conspecific tadpoles in many of théqibymata of the terrestrial
bromeliadA. aquilega may for the same reason explain why these ledés wdre not

used for oviposition. In contrast to a prefererareeigg deposition in bromeliads on

15



354 the forest floor byR. amazonica, the sister specidanitomeya variabilis was found to
355 select phytotelmata that were located two meteos@khe forest floor. Schulte et al
356 (2010) hypothesized that this may be a strategywtid the many predators on the
357 forest floor. Since eggs &. variabilis are deposited above the water line of the
358 phytotelm (Brown et al 2008a,b), terrestrial prémlainay be selecting stronger on
359 oviposition site selection than aquatic predatorshis species. Interestingly, we

360 found eggs to be deposited primarily in leaf athist were directed towards the

361 geographic south. Although these leaf axils wese abntaining a smaller volume of
362 the phytotelm than the average leaf axiCirberteroniana, we noted that this is

363 confounded with a more horizontal position of teaflaxil. Most of theC.

364 Dberteroniana bromeliads were tilted so that their southern h@é more horizontal
365 and leaves on the northern half were standing wentecally. We speculate that the
366 choice for phytotelmata on the southern half ofil@meliad is due to the preference
367 of horizontal surfaces for oviposition and counst8pace requirements for egg

368 deposition were found to explain oviposition prefege inR. sirensis (R. biolat in von
369 May et al 2009b) that uses bamboo internodes asl@ggsition site. Here eggs were
370 deposited in internodes that provided sufficiersicgpabove the water line of the
371 phytotelm to attach eggs to the bamboo so thatweeyd not run the risk of sliding
372 into the phytotelm (von May et al 2009b).

373 In contrast to eggs, tadpoles were found in lavgger bodies that were rich
374 in detritus on which the tadpoles feed. PhytotetnodiA. aquilega were offering

375 larger water volume and contained higher abundahdetritus than phytotelmata in
376 C. berteroniana and thereford\.. aquilega may have been preferred for tadpole

377 deposition. Although phytotelm volume and detréisindance were confounding

378 factors explaining the tadpole deposition prefeean@. aquilega, our choice tests
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revealed thaR. amazonica males select phytotelmata on the abundance afwdgtr.e.
select on phytotelmata that offer food to theispfing (compare von May 2009b).
Nevertheless, water volume may still co-accounpfeference of tadpole deposition
in A. aquilega, since our choice test for different water volumesseived too few
depositions to rule out this parameter. Beforeasteg the tadpole off their back,
males were observed to repeatedly dive into thégpélyn. Potentially, males may
visually explore the phytotelm for presence of jateds or food, but may also use
taste or smell to assess the quality of the preto{lSchulte et al 2011). Water
exposed to conspecific tadpoles was found to beladdor egg and tadpole
deposition byR. variabilis, confirming that chemical cues in water may beduse
assess phytotelm quality (Schulte et al 2011, $elad Lotters 2013). The use of
chemical cues to assess the quality of reprodusttes is well known for insects. For
example, several agquatic insects use both ododrs@rtact with water to assess
presence of conspecifics, predators or nutrienteckié 1994; Silberbush and
Blaustein 2008). Also terrestrial insects rely athbodour profiles and taste of their
food plant to assess the content of for examplerds#fe chemistry of the plant and
therefore suitability as food plant for their offsg (Mayhew 1997; Schoonhoven et
al 2005).

As in insects there is only a single phase in wiiénales decide to which
reproductive site her offspring will be confined @yiposition, parental care in poison
frogs includes relocation of tadpoles after thetgchdrom their eggs and offers
parents an opportunity to partition eggs and taspoler reproductive sites. Here we
show that parents have distinct preferences foraagitadpole deposition sites and
can make this distinction because of tadpole tramgm the back of the parent.

However, preferred tadpole sites were absent framynof the male territories in our
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study. Males were observed to visit these prefesaddole deposition sites in
territories of other males (Summers and Amos 18@&lman and Dicke 2008). This
behaviour has resulted in an array of reprodudirategies that infer costs to the
reproductive success of other males and may rigsséixual conflicts among parents
of the tadpole. Tadpole carrying males that introtiheer territories, may have the
opportunity to deposit their tadpoles in phytotefaneontaining eggs sired by an
unrelated male (Brown et al 2009). Deposition dptaes in egg containing
phytotelmata may be beneficial for the male sitimg tadpole, as the eggs provide the
tadpoles with a high quality food source. Maled fhieate on reproductive sites of
other males, reduce the reproductive success ef btieeding pairs (Summers and
Amos 1997; Poelman and Dicke 2007; Brown et al 2080ch deposition strategies
may however also result in sexual conflict whenewaleposit tadpoles in
phytotelmata that contain eggs or tadpoles they biit are offspring of another
female (Poelman and Dicke 2007; Schulte and Log@is3). These food provisioning
strategies may be beneficial to females when sdrheroeggs or tadpoles are
provided to her own offspring and enhance surnwW@nces of the provisioned
tadpole (Poelman and Dicke 2007; Schulte and L$264.3). To ensure provisioning
only to her own offspring, females may be seleétednvolvement in parental care.

In addition to the ecological parameter of repdthe sites such as water
volume or food availability that may directly dri@ansitions in parental care (Brown
et al 2010), the distribution of reproductive siath preferred quality characteristics
may indirectly contribute to selection on parewrtaie by sexual conflicts involved in
reproductive strategies to exploit reproductivesiSuch transitions may be enhanced
by co-existence of several species of poison ftbgsuse phytotelmata for

reproduction and in which at least one of the sg®ebas predatory tadpoles. To avoid
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predation by other poison frog tadpoles, poisog §pecies with less competitive
larvae may colonize (smaller) phytotelmata thatrereused for tadpole deposition by
species with predaceous tadpoles, i.e. niche jpaitig (Brown et al 2008a,b; Ryan
and Barry 2011). Selection of smaller phytotelntatavoid predation, coinsides with
reduced resource availability and potentially imsed risk of desiccation (Summers
and McKeon 2004). Through plastic reproductivetsgyges that include provisioning
of offspring with either eggs (Poelman and Dick@20or young tadpoles (Schulte
and Lotters 2013), for example driven by seasohnanges is phytotelm stability,
females may have been selected for involvemenaiamal care. This dynamic
interplay between ecology and behavioral plasticigy have driven transitions in the
mode of parental care by poison frogs and explerassociation of species with
female involvement in parental care with small piwtmata as reproductive sites.
Simple ecological parameters may therefore drivedugdon of parental care (Brown
et al 2010) and these insights from studies onopoiiogs should encourage to
explore potential ecological parameters that umglestolution of parental care in

other organisms.
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Figure legends

Fig. 1: A maleRanitomeya amazonica at Inselberg in the Nouragues nature reserve

Fig. 2: Top view of aCatopsis berteroniana bromeliad showing its leaf axils that hold
phytotelmata and two panels showing the methodcédgiumbering of the position

of a leaf axil. The middle panel depicts the rasatimbering to indicate the position
of the leaf axil towards the central rosette oftbh@meliad. The right panel depicts the
geographic orientation of the leaf axil computeahfrdegrees into eight segments of

the 360 degree circle.

Fig. 3: Distribution of eggs and tadpoles over phytoteradtthree bromeliad species,
Pitcairnia geykess (dark grey)Aechmea aquilega (black),Catopsis berteroniana

(light grey), compared to the availability of thgdgytotelmata in the study area.

Fig. 4: RDA plots of leaf axel characteristics that difeanong bromeliads (A) and
empty control versus phytotelmata used for egg siéipa in Catopsis berteroniana

(B). (A) Individual points represent single leaflavand their phytotelm measured for
16 parameters of random axils@dtopsis (black circles) and\echmea (green
squares). (B) Individual points represent leafsagifiCatopsis that were randomly
selected and not used for egg deposition (blackes) or leaf axils in which eggs
were found (orange squares). Blue arrows in bagtsphdicate the direction of
increase in value of a parameter and parametersigraficantly correlated with one

of the PC axis are identified with their name.
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Fig. 5: Orientation distribution o€atopsis leaf axils that were used for egg
deposition. Each black dot represents a single alasgg deposition and its position
corresponds with the degrees derived from the rmrta 360 degrees circle as well as

the eight segments in which the degree values e@rputed for statistical analysis.

Fig. 6: Number of tadpoles deposited in plastic cups ¢oimg 50ml of clear water or
water with detritus that were offered in pair wagtached to bromeliads in the field.
Cups with detritus received significantly more tal#is than cups holding water only

(Binomial test P = 0.013).
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Table 1: Measurements of leaf axil and phytotelm charadtesi®f control axils and those that had receivggl @ tadpole deposition B3
amazonica in two bromeliad specie€atopsis berteroniana andAechmea aquilega. Bold face type indicate axil characteristics tgblained

variation in the RDA analyses between bromeliactigseor axils used for reproduction.

Catopsis berteroniana

Aechmea aquilega®

control egg tadpole control tadpole
Leaf axil characteristic (n =40) (n=24) (n=7) (n =40) (n=17)
Height above forest floor (cm) 45.58 (36.09) 16.%80.34) 13.00 (23.13) 0 (0.00) 0 (0.00)
Geographic orientation® 4.25 (2.01) 5.71 (2.44) 6.14 (2.10) 4.45 (2.24) 4142.14)
Nr. of leaf rosettes 4.55 (0.71) 4.38 (0.82) 4.1169) 6.75 (1.01) 8.00 (1.12)
Leaf rosette numb@t 0.66 (0.19) 0.90 (0.13) 0.84 (018) 0.65 (0.19) 6q(h24)
Width (cm) 2.83 (0.64) 2.50 (0.46) 2.66 (0.49) 5.2976) 5.39 (1.21)
Depth (cm) 9.52 (2.88) 5.95 (2.95) 7.19 (3.96) BYB.72) 16.52 (5.42)
Water volume (ml) 10.63 (6.57) 4.93 (3.50) 6.43%3) 81.38 (35.68) 85.65 (40.35)
Water temperature (°C) 26.60 (0.88) 25.74 (0.90) .52%1.09) 23.99 (0.70) 24.45 (0.58)
Water Ph 5.42 (0.21) 5.48 (0.28) 5.51 (0.29) 50118) 5.37 (0.13)
K* (mol/m?) < 0.5 (0.00) < 0.5 (0.00) < 0.5 (0.00) <0.5@®.0 < 0.5 (0.00)
NOs - NOz” (mgl/l) 50 — 10 (0.00) 50 — 10 (0.00) 50 — 10 (.00 50 — 10 (0.00) 50 — 10 (0.00)
PQ:* (mg/l) 2.10 (2.71) 0.67 (1.69) 0.43 (1.13) 3.83163. 3.71 (2.71)
Amount of detritus© 1.20 (0.85) 1.54 (0.83) 1.29 (0.95) 2.13 (1.28) 9420.90)
Presence of alg&e 0.30 (0.69) 0.17 (0.48) 0.14 (0.38) 0.35(0.77) 001(0.79)
Nr. Of insect larvae 0.40 (0.55) 0.17 (0.38) 0.0488) 0.03 (0.16) 0.00 (0.00)
Nr. of other tadpoles 0.00 (0.00) 0.00 (0.00) q@O0) 0.12 (0.33) 0.00 (0.00)

(a) Computed compartment number from circular degfegeographic orientation (Figure 1)
(b) Number of rosette of measured leaf axil divitlgdhe total number of rosettes in the bromelfadyre 1)

(c) Scored visually on a scale of 0to 5
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(d) Scored visually on a scale of 0 to 3
(e) Only a single egg clutch was found in a wassrleaf axil ofA. aquilega

31



Fig 1
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Fig 2
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