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Abstract 
We compare life course typology solutions generated by sequence analysis (SA) and latent class 
analysis (LCA). First, we construct an analytic protocol to arrive at typology solutions for both 
methodologies and present methods to compare the empirical quality of alternative typologies. 
We apply this protocol to develop and compare SA- and LCA-derived family-life typologies for 
women born between 1960 and 1964 in 15 European countries, using data from the Family and 
Fertility Survey. This paper contributes to the use of these classification techniques in four 
different ways. First, we present guidelines on how to establish the number of classes or clusters 
to use. Second, we show how to evaluate the stability of these clusters. Third, we provide a way 
to evaluate the validity of these clusters and finally, we provide for a formal heuristic to relate 
the stochastically defined latent classes to the distance-based clusters found with SA. 

 
 

Keywords 
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Introduction
    A prominent approach within life course research 
is to analyse life courses as sequences of states or 
state-transitions (see e.g. Buchmann & Kriesi, 
2011). In this approach, two main methodological 
paradigms have been widely used: Event History 
Analysis (see e.g. Mills, 2011) focuses on describing 
or explaining the time to occurrence of specific 
events. The second approach takes a holistic 
perspective and utilises the life course itself as the 
unit of analysis and usually aims for a typology of 
life course trajectories. The typology itself may 
reveal substantive patterns and the resulting class-
membership is often used as a dependent or 
independent variable in further analyses. Brzinsky-

Fay and Kohler (2010) argue that these two types of 
approaches can be viewed as complementary 
rather than as competing. 
     In this paper, we compare two strategies to 
construct such holistic life course typologies. The 
first strategy, called Sequence Analysis (SA) (Abbott 
& Forrest, 1986; Cornwell, 2015), starts by 
calculating a distance measure over the set of 
sequences and then tries to partition the resulting 
distance matrix into clusters of trajectories. 
Sequence analysis and its related typology 
techniques have been widely applied in studying life 
course trajectories in the social sciences (e.g. 
Kleinepier, de Valk & Gaalen, (2015); Helske Steele, 
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Kokko, Räikkönen & Eerola, (2014)). The second 
strategy uses a probabilistic model that describes 
an observed life course sequence of categorical 
values as resulting from the conditional 
probabilities that define membership of a latent 
class and is called Latent Class Analysis (LCA) 
(Hagenaars & McCutcheon, 2002). Barban and 
Billari (2012) suggested that LCA can be used as an 
alternative to SA to derive meaningful 
classifications of life course patterns. Barban and 
Billari (2012) demonstrated (see their Table 1) that 
SA and LCA could generate quite different 
typologies from the same data. This does not come 
as a surprise as SA and LCA use very different 
methodologies. Using SA implies selecting a 
distance measure followed by a clustering method 
to partition the distance matrix. Using LCA implies 
that a category or class is defined by a probability 
distribution function over a set of categorical 
observations like ’living single’ or ’getting married’: 
different classes are defined by different probability 
distribution functions over the same states. Thus, 
both methods imply quite different steps to 
generate a life course typology. 
     The main aim of this paper is to discuss how 
typologies derived from SA and LCA can be 
compared and their quality assessed. The tools 
introduced to allow this assessment are useful in a 
more general sense as well. They can also be used 
to decide between typologies generated by 
different distance metrics or different clustering 
methods in SA, and thus are of interest to all users 
of holistic life course methods. This paper also 
offers guidance to researchers who want to use SA 
and/or LCA in their research, by outlining the steps 
to be taken and the decisions to be made in 
performing an SA and/or LCA analysis and by 
discussing practical bottlenecks that often pop up. 
     The paper is structured as follows. First, we offer 
a description of the main steps to be taken in 
developing a typology using SA and LCA. Next, we 
discuss methods to compare the SA and LCA 
typology solutions and to decide on which 
particular solution is to be preferred. We illustrate 
these procedures by analysing data from the Family 
and Fertility Survey as presented in the Methods 
and Data section. Next, we present the results of 
our illustrative example and in our final section we 
draw conclusions about the more general 
implications of the suggested procedures. Three 
appendices are added. In Appendix 1, practical 

issues are discussed. In Appendix 2, we present a 
heuristic explanation of sequence generation that 
bridges the gap between SA and LCA. In Appendix 3, 
R-based commands are provided that can be used 
as a code-model for the analyses presented. 

 
Sequence Analysis 
     Sequence analysis (SA) has become the key 
holistic method to study life course trajectories 
since Abbott (1983) introduced it in the social 
sciences. This section briefly outlines the necessary 
steps and decisions to arrive at an SA-based 
typology. A sequence dataset has to be constructed 
from life course data. In this paper, we organised 
the sequence data as a state-sequence dataset. 
Other methods have been discussed in Ritschard, 
Gabadinho, Studer and Müller (2009). The main 
idea behind SA is to express the dissimilarity 
between pairs of sequences as a distance. The 
larger the distance between two sequences, the 
more dissimilar they are (but see Elzinga & Studer, 
forthcoming). Therefore, the first decision in 
sequence analysis is about choosing an appropriate 
distance metric. The two main classes of metrics 
available are edit-based metrics and subsequence-
based metrics. Edit-based metrics measure the 
distance between two sequences by counting the 
minimum number of (weighted) edit-operations 
required to turn one sequence into a perfect copy 
of the other. In the social sciences, these metrics 
(and their numerous variants) are known as 
’Optimal Matching’ (OM) (Abbott & Forrest, 1986). 
     Edit-based metrics are rather insensitive to 
differences in the ordering of states (Elzinga & 
Studer, 2015). This motivated the development of 
so-called subsequence-based metrics (Elzinga, 
2005; Elzinga & Wang, 2013). These metrics 
measure the distance between sequences by 
counting the number of (weighted) common 
subsequences. For a detailed review of distance 
metrics for SA, we refer to Robette and Bry (2012), 
Studer (2012) and Studer and Ritschard (2016). In 
our illustration, we only present the SA approach 
with an OM-metric. The reason for this choice is 
twofold. First, family-formation patterns in modern 
Western societies vary relatively little in the 
ordering of events (Billari & Liefbroer, 2010). This 
makes OM a quite natural choice. Today, OM is the 
most commonly used metric in studies on the 
transition to adulthood (Aassve, Billari & Piccarreta, 
2007; Brzinsky-Fay, 2007; Robette, 2010). Second, 
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preliminary analyses showed that in this particular 
illustration, the OM metric clearly outperformed 
other metrics. The code in Appendix 3 is easily 
adaptable to any of the other metrics offered 
through R-based software. 
     The computation of distances between all 
sequences results in a distance matrix. The second 
step in SA uses this distance matrix to partition 
sequences into more or less homogeneous groups. 
Various clustering methods are suitable for this 
purpose, including hierarchical clustering (Maimon 
& Rokach, 2005), partitioning around medoids 
(PAM) (Kaufman & Rousseeuw, 2009), and self-
organising maps (SOM) (Massoni, Olteanu & 
Rousset, 2009). Among them, Ward’s method is 
most widely used (Aassve et al. 2007; Billari & 
Piccarreta, 2005; Pailhé, Robette & Solaz, 2013).i  
     Ward’s method (Ward Jr, 1963) iteratively 
merges ever-bigger clusters of sequences such that, 
in each iteration, the increase of the total within-
cluster distance is minimised. Critical in this step is 
to determine at what level of agglomeration, i.e. at 
which number of clusters, to stop the merging 
process, as this number is not determined by the 
method itself. The number of clusters has to be 
decided upon by applying a combination of 
substantive theory and measures of statistical 
cluster quality. Substantive theory alone may not 
adequately summarise the observed heterogeneity 
of life course patterns and the clustering algorithm 
may not lead to a parsimonious set of internally 
homogeneous and well-separated clusters. 
We use three statistics (e.g. Table 2 in Studer, 2013) 
to empirically determine cluster quality: Average 
Silhouette Width (ASW), Hubert’s C index and the 
Point Bi-serial Correlation (PBC). ASW (Rousseeuw, 
1987), compares the average packing of points 
within clusters to the average distance of points to 
the closest cluster to which these points do not 
belong. A high ASW-value implies that clusters are 
homogeneous and well separated from each other. 
The HC index (Hubert & Levin, 1976) shows the gap 
between the partition obtained and the best 
partition theoretically possible with this number of 
groups. A low value of HC indicates good clustering. 
Finally, PBC (Milligan & Cooper 1985) measures the 
capacity of the cluster solution to reproduce the 
original distance matrix. A high PBC value is 
preferred.  
     Ideally, one would not only want to know what 
the optimal number of clusters is, but also their 

stability. To evaluate stability, most statistical 
analyses involve not only the estimation of model 
parameters, but also the estimation of their 
standard errors. In SA, this is not possible. However, 
once a theoretically and numerically acceptable 
cluster solution is obtained, one can examine its 
stability to data sampling fluctuations by using 
bootstrap methods. Such bootstrapping (e.g. James, 
Witten & Tibshirani, 2013) allows examining 
whether the clustering algorithm returns the same 
solution across several sub-samples. The 
clusterwise Jaccard Bootstrap Mean (CJBM) 
(Hennig, 2007), is a measure that uses the 
bootstrap to re-sample the data and to compute 
the Jaccard similarities of the original clusters to the 
most similar clusters in the re-sampled data. As 
proposed by Hennig (2008), when CJBM is below 
0.6, the cluster solution should not be trusted. If 
CJBM is above 0.85, the classification technique 
generates highly stable clusters. A CJBM between 
0.6 and 0.85 suggests some structure, but exact 
cluster membership is uncertain. 
     Cluster quality and stability measures have to be 
combined with theoretical interpretation for sound 
typology decisions. Therefore, the last step in 
creating an SA typology is to provide a substantively 
meaningful interpretation of the clusters. 
Visualisation tools such as sequence index plots 
(Scherer, 2001) and sequence medoid plots 
(Gabadinho, Ritschard, Müller & Studer, 2011) 
facilitate interpretation of cluster solutions. In 
sequence index plots each sequence is represented 
by a line composed of differently colored segments, 
with colors representing states and the length of 
the segments being proportional to the time spent 
in a state. A sequence index plot summarises large 
amounts of information in a single graph: order, 
prevalence and timing of states and overall 
variability within and between sequences. The 
medoid sequence is an observed sequence whose 
average distance to all the other sequences in a 
cluster is minimal.  
     The SA-cluster solution is affected by many 
factors: the sequence encoding, the choice of a 
metric, and the choice of a clustering technique.  
Here, we present no sensitivity analyses of our 
results since our purpose is mainly to elaborate on 
the global methodologies of applying and 
comparing SA and LCA. 
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Latent Class Analysis 
     Latent Class Analysis (LCA)ii is a statistical 
technique for the analysis of multivariate 
categorical data (see e.g. Hagenaars & McCutcheon, 
2002). To concisely explain the LC-model, we need 
some concepts and notation. First, we write 
𝑦 = 𝑦1…𝑦𝑛 to denote an observed sequence of 
length 𝑛. Second, we denote the latent class model 
Θ as a set of 𝑅 conditional probability distributions 
𝑇 = {𝜃1, … 𝜃𝑅} over the observable states, each of 
these characterising precisely one of the 𝑅 latent 
classes. Furthermore, the model needs a 
specification of the probability that a sequence is 
generated from any of these latent classes, the 
vector 𝑃 = (𝜋1, … 𝜋𝑅) wherein 𝜋𝑗 denotes the 

probability that a sequence is generated from 𝜃𝑗. 
Thus a complete LC-model can be specified as 
Θ = (𝑅, 𝑇, 𝑃). The LC-model states that the 
probability of observing a particular sequence, 
given the model, equals 
 

𝑃𝑟𝑜𝑏(𝑦|𝑇) =  ∑ 𝜋𝑟∏ 𝑃𝑟𝑜𝑏(𝑦𝑖|𝜃𝑟)𝑛
𝑖=1

𝑅
𝑟=1 .              

 
     So, the model states that, given a fixed latent 
class 𝑟, the consecutive observed states are 
statistically independent and this assumption is 
known as ‘local independence’. This mixture model 
(e.g. McLachlan & Peel, 2000) is closely related to 
supervised Naive Bayes classifiers (Hand & Yu, 2001; 
Vermunt & Magidson, 2003). Despite the highly 
implausible assumption of local independence 
(Rennie, Shih & Karger, 2003), such models often 
perform quite well for classification tasks because 
dependencies often are equal across classes or 
cancel out (Zhang, 2005). Of course, some 
sequences may be extremely (un-)likely to be 
generated from some of the latent classes. If the 
number of classes is well chosen, each observed 
sequence is relatively (much) more likely to have 
been generated from one particular latent class 
than from any of the other classes. Therefore, class 
membership of each specific sequence is often 
decided by assigning the sequence to the class with 
the highest probability of generating that sequence. 
     Local independence implies that, for each latent 
class, observing the sequence 𝑎𝑎𝑎𝑏𝑏𝑏 is precisely 
as likely as observing the sequences 𝑏𝑏𝑏𝑎𝑎𝑎 or 
𝑎𝑏𝑎𝑏𝑎𝑏 or any other of the 20 discernable 
permutations of these six observations. So, local 
independence is a counter-intuitive assumption in 
the context of modelling life course sequences. 

Indeed, as can be observed from Figure 2, life 
courses mainly differ in the timing and selection of 
states, not in the orderings of states. The 
assumption of equal probability of observing any 
ordering of a given collection of states arises from 
the assumption that, given a conditional 
distribution 𝜃𝑖, the observable states are generated 
by just sampling the alphabet of states according to 
𝜃𝑖. The observation that order-differences are rare 
(Figure 2) in fact constitutes a statistical test of this 
assumption: the assumption should be rejected 
because of observing so little variation of state-
orderings. Therefore, applying the LC-model to 
describe life courses requires an interpretation of 
that model that, on the one hand, includes the 
assumption of local independence but that, on the 
other hand, makes variation in the ordering of 
states implausible. Such an interpretation is amply 
discussed in Appendix 2: it is assumed that different 
classes arise by different “template sequences” that 
are edited, state by state, such that 

1. successive edits are statistically 
independent and 

2. edits resulting in an actual change of a 
template-state are implausible. 

     So, in this interpretation, sampling observable 
states from class-conditional distributions is 
replaced by sampling of edits and applying them to 
class-conditional templates. If one additionally 
assumes that there is a unique, most likely path of 
edits, OM-distances between pairs of sequences are 
monotone with the probability that these pairs 
result from (editing) the same class-specific 
template. If this assumption is valid, the observed 
scarcity of order differences within classes is 
explained. In Appendix 2, we detail and formalise 
this interpretation and the unifying SA-LC 
assumption of one dominant edit path.  
     Just like in cluster analysis, when using LCA, one 
has to decide on the optimal number of classes. The 
number of latent classes to a large extent 
determines the fit of the model: the more latent 
classes, the “easier” it becomes to accommodate 
the diversity of the observed sequences. As the 
number of classes increases, the likelihood of the 
model generating the sequences increases, but at 
the risk of fitting to noise and at the expense of 
estimating more model parameters. Although the 
LCA model itself does not automatically determine 
the number of latent classes, a variety of goodness 
of fit statistics are available (Lin & Dayton, 1997). 
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Using statistics such as BIC and relative entropy 
(Vermunt & Magidson, 2013), one can gain 
information about model fit against the number of 
latent classes. One usually looks for a minimum in 
the BIC-curve. Relative entropy is between zero and 
one, with values near one indicating high certainty 
in classification and values near zero indicating low 
certainty. Here, we will use information on both BIC 
and relative entropy. 
     Like in SA, visualisation tools can be used to 
facilitate the interpretation of the latent class 
solution. By estimating, separately for each latent 
class, the sequence state with the highest 
frequency at each time point, we construct a model 
state sequence for each latent class. The resulting 
sequence model state plot in LCA is comparable to 
the medoid plot in SA in the sense that it aims at 
summarizing the key features of a cluster. However, 
whereas in SA the medoid is an actually observed 
sequence, the model state sequence in LCA might 
be a non-existing sequence. An interpretation of 
the latent class can also be obtained through visual 
inspection of the sequence index plot. Thus, the key 
decision in LCA to be made is on the number of 
latent classes and their interpretation can be aided 
by sequence index plots and sequence model state 
plots. 
 

Typology Comparison 
     Both SA and LCA can assist researchers to detect 
structures in sequence data by segmenting the life 
course sequences into clusters or classes. However, 
the most basic distinction between SA and LCA is 
the way in which the classes or types are defined. 
An SA typology is based on a distance measure, a 
clustering procedure and a set of statistics that 
determine the quality of the cluster solution, while 
an LCA typology is obtained via the maximisation of 
a likelihood function that derives from a 
probabilistic model. Two questions arise in this 
context: (i) how similar are both typologies and (ii) 
can we decide on which solution has to be 
preferred? 
     A number of tools are available to judge how 
similar the two solutions are. The simplest tool is a 
cross tabulation of both typologies. Let 𝑆 be a set of 
𝑁 data-items and let 𝑈 denote an SA-typology over 
𝑆: 𝑈 = {𝑈1, 𝑈2 , … , 𝑈𝑅} with 𝑈𝑖⋂𝑈𝑗 =  ∅; and 

⋃𝑖𝑈𝑖 = 𝑆. Similarly, let 𝑉 denote an LCA-typology 
over 𝑆:  𝑉 = {𝑉1,𝑉2, … , 𝑉𝐶} with 𝑉𝑖⋂𝑉𝑗 =  ∅; and 

⋃ 𝑉𝑖𝑖 = 𝑆. An 𝑅 ×  𝐶 cross-tabulation summarises 

the overlap between the two typologies by listing 
the numbers 𝑛𝑖𝑗 = |𝑈𝑖 ∩ 𝑉𝑗|. A quantification of the 

overlap or agreement between two classifications 
can be achieved through the Rand index. The Rand 
index (Rand, 1971) is built upon counting pairs of 
items on which two typologies agree or disagree. As 
used above, the 𝑁 item pairs in 𝑆 can be classified 
into one of four types 𝑁11: the number of pairs of 
which the members are in the same cluster in both 
𝑈 and 𝑉; 𝑁00: the number of pairs of which the 
members are in different clusters in both 𝑈 and 𝑉; 
𝑁01 : the number of pairs of which the members are 
in the same cluster in 𝑈 but in different clusters in 
𝑉; and 𝑁10: the number of pairs of which the 
members are in different clusters in 𝑈 but in the 
same cluster in 𝑉. These numbers can be calculated 
using the 𝑛𝑖𝑗. 𝑁11 and 𝑁00 can be used as indicators 

of agreement between 𝑈 and 𝑉. The Rand index (R) 
is defined as: 𝑅 = (𝑁00 + 𝑁11)/(𝑁00  +  𝑁01 +
 𝑁10  +  𝑁11), which ranges from 0 (no pair 
classified in the same way under both typologies) to 
1 (identical typologies). In our illustration, we will 
adopt the adjusted Rand index (Hubert & Arabie, 
1985) used by Barban & Billari (2012) to compare 
typologies.   
     The adjusted Rand index provides us with 
information about how different the two typologies 
are, but does not provide any clue about whether 
one or the other typology is superior. We suggest 
that the concept of construct validity as developed 
in psychometrics (Cronbach & Meehl, 1955; Ross, 
Wright & Anderson, 2013) can be fruitfully applied 
to decide which one of a set of alternative 
typologies is preferable. A typology can be viewed 
as a theoretical construct that is always part of a 
larger nomological network, i.e. a set of 
relationships between the concept of interest (the 
typology) and other concepts. If one has 
expectations about the statistical relationship 
between a typology and other concepts, one can 
measure the strength of these statistical 
relationships for each of the typologies. The 
stronger these relationships, the more likely it is 
that the measure of a construct is valid. This 
approach is often used in psychology to assess the 
validity of psychological constructs (e.g. Leary, Kelly, 
Cottrell & Schreindorfer, 2013). The nomological 
network approach is illustrated in Figure 1. A life 
course typology is part of a nomological network 
that specifies how this typology is related to other 
variables, either determinants (x1….xi) or 
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consequences (y1…yi). Given our knowledge about 
the expected relationships in this network, one can 
assess how strongly alternative typologies are 
related to the rest of the nomological network. In 
general, one would prefer the typology that shows 
the strongest associations with other variables in 
the network. Given that we can use substantive 

information about the expected relationship 
between a life course typology and related concepts 
(e.g. levels of education, religiosity and well-being), 
this approach offers an elegant, theory-driven 
solution to the dilemma of deciding between 
alternative life course typologies. 

 
 
 

  

Figure 1. A representation of a nomological network surrounding a life course typology 

 
     The statistical application of this idea of 
construct validity depends on the kind of 
relationships within the nomological network. If one 
examines relationships between the typology and 
consequences, one can use linear or logistic 
regression, depending on the measurement level of 
the dependent variables. If one examines the 
relationship between typologies and their 
determinants, the easiest test of construct validity 
would be to estimate separate multinomial logit 
models with each of the competing typologies as 
the dependent variable, and a joint set of 
predictors. What complicates matters here, is that 
one cannot simply compare the fit-statistics of such 
models, as the dependent variable (class 
membership) differs between typologies, and thus 
one cannot use standard indicators of model fit. 

However, an alternative procedure is possible by 
swapping the dependent and independent 
variables, and predicting the available background 
variables from the SA- and LCA-generated 
typologies. Given that the dependent variables are 
the same now, one can use BIC and other fit-indices 
to judge which typology is more strongly related to 
the background variable of interest. One can repeat 
this procedure for multiple background variables, 
and decide upon the best typology by comparing 
the sets of BIC values for the alternative typologies. 
Alternatively, one can use a MANOVA-approach to 
compare the quality of the different typologies. 
Here, we do not use such a multivariate MANOVA-
approach because the underlying distributional 
assumptions are hard to test thoroughly. However, 
such multivariate tests and the instruments for 
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analysing the power of such tests are readily 
available (e.g. Faul, Erdfelder, Lang & Buchman, 
2007) to the interested reader.  
 

Methods and Data 
Data  
     We used a subset of the Family and Fertility 
Survey (Festy & Prioux, 2002). This subset (Elzinga & 

Liefbroer, 2007) includes 10,301 female 
respondents from 15 countries born between 1960 
and 1964. Full monthly event history information 
was available regarding respondents’ fertility and 
partnerships between ages 18 and 30, their country 
of birth, years of education after age 15, religion 
and parental divorce, as shown in Tables 1 and 2.iii 

 

 

Table 1. Definition of social background variables used in the typology comparison 

Abbreviation Meaning 

Edu1 No education after age 15 
Edu2 0-3 years of education after age 15 
Edu3 3-5 years of education after age 15 
Edu4 5+ years  of education after age 15 
Pardiv0 Parents not divorced 
Pardiv1 Parents divorced 
Pardiv3 Parents’ divorce not known 
Reli0 Not religious 
Reli1 Catholic 
Reli2 Protestant 
Reli3 Other religion 
Reli4 Religion unknown 
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Table 2. Number of respondents per country and percentage of the respondents per category of the social background variables 
 

 Region edu1 edu2 edu3 edu4 pardiv0 pardiv1 pardiv3 reli0 reli1 reli2 reli3 reli4 Nr. Resp. 
1 Estonia 9.51 48.59 41.20 0.70 66.20 22.18 11.62 47.54 0.00 41.20 11.27 0.00             284 
2 Czech Republic 5.10 23.81 50.34 20.75 85.37 14.29 0.34 -- -- -- -- --             294 
3 France 8.02 44.32 22.94 24.72 87.53 10.91 1.56 -- -- -- -- --             449 
4 New Zealand -- -- -- -- -- -- -- -- -- -- -- --             460 
5 Hungary 21.58 30.56 25.85 22.01 85.04 14.53 0.43 39.10 47.65 8.12 3.21 1.92             468 
6 Latvia 0.85 22.67 39.41 37.08 77.12 19.07 3.81 31.78 20.55 17.37 26.69 3.60             472 
7 Lithuania 1.17 15.37 33.46 50.00 80.54 18.09 1.36 8.17 80.93 0.78 8.56 1.56             514 
8 Slovenia 18.02 20.14 32.69 29.15 92.40 7.42 0.18 21.02 68.90 0.18 8.66 1.24             566 
9 Netherlands 4.08 35.85 22.84 37.22 85.02 9.98 4.99 39.94 34.80 19.21 5.90 0.15             661 
10 Spain 36.95 22.36 10.84 29.85 97.32 2.68 0.00 17.40 78.05 0.54 3.08 0.94             747 
11 Austria 20.88 30.05 33.51 15.56 90.03 9.44 0.53 30.72 59.18 3.59 6.38 0.13             752 
12 Canada -- -- -- -- 82.72 15.31 1.96 3.80 46.73 33.77 15.71 0.00             764 
13 Italy 30.47 15.48 18.43 35.63 97.79 2.21 0.00 8.72 90.05 0.49 0.61 0.12             814 
14 Portugal -- -- -- -- 94.38 5.18 0.44 -- -- -- -- --             908 
15 U.S.A. 50.65 0.28 8.47 40.60 75.84 24.07 0.09 8.47 29.05 49.67 12.71 0.09           2148 

 
The table is ordered by the total number of respondents per region 
“–“: Data not available 
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We organised the sequence data as a state 
sequence (STS) data set (Ritschard, Gabadinho, 
Studer & Müller, 2009). STS is a chronologically 
ordered list of the states based on the survey 
information. We distinguish six family formation 
states: living single (S), unmarried cohabitation (U), 
marriage (M), living single with a child/children (SC), 
cohabitation with a child/children (UC), and 
marriage with a child/children (MC). Therefore, the 
sequence data consist of 144 monthly family-life 
statuses; an example from one respondent is shown 
below.  

𝑆…𝑆 ⏞  
87

𝑀…𝑀⏞    
56

 𝑀𝐶 …𝑀𝐶⏞      
11

 
 
     This person has first spent 87 months in the 
Single state, followed by 56 months in the Married 
state and 11 months in the Married with Children 
state. 

Methods 
     All methods introduced in the previous sections 
were applied to data set. All analyses were 
performed in the R software environment for 
statistical computing and graphics on a 3.2 GHz 
CPU, 32GB RAM and 64-bit PC, using the R packages 
TraMineR (OM), stats (hierarchical clustering), 
WeightedCluster (cluster decision), fpc 
(bootstrapping), poLCA (LCA), flexclust (Rand index), 
and nnet (multinomial logistic regression). 
 

Results 
SA Typology 
     Following the steps outlined earlier, we first 
compute a distance matrix using the TraMineR 
software (Gabadinho et al., 2011). There are many 
different metrics to construct distances between 
sequences. The choice for either of these metrics 

may affect the nature of the resulting typology. So, 
one should be aware of the differences between 
these metrics (see Robette & Bry (2012), Elzinga & 
Studer (2015) and Studer & Ritschard (2016) for a 
detailed discussion of these issues). Here, we 
experimented with a variety of distance measures: 
OM with various cost settings and a sequence-
based vector representation (Elzinga & Studer, 
2015) with various parameter settings. OM with 
indel-cost of 4 and substitution-cost of 2 (the 
default setting of TraMineR) generates the best 
solution. Here, we present the results for the 
selected OM-metric only. The cost setting used 
implies that all substitutions were equally costly 
and that mere deletion or insertion never occurred. 
The solutions for other distance measures can be 
obtained from the first author upon request. 
     In our example, we use, for reasons already 
explained, hierarchical clustering (Ward’s method). 
In Table 3, values of ASW, PBC, and HC are 
presented for solutions with two to eight clusters. 
The values in Table 3 show that a solution with six 
clusters is favored, as this solution combines the 
highest values of ASW (0.63) and PBC (0.35) with 
the lowest value of HC (0.10). The next step is to 
test the stability of the cluster solution by using the 
CJBM statistic. This statistic indicates to what extent 
sequences are likely to be assigned to the same 
cluster over a large number of random draws from 
the sample. The higher this likelihood, the more 
stable the cluster solution is. The CJBM statistic for 
the six clusters of the SA-6 solution varies between 
0.45 and 0.76, falling short of the 0.85-level, which 
is considered to indicate high cluster stability. This 
suggests that quite a few clusters are not very 
stable. Table 4 shows that for the SA-7 solution, the 
CJBM statistics vary between 0.42 and 0.76. 
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Table 3. Values of cluster quality statistics 

 
Number of clusters PBC ASW HC 
2 0.48 0.34 0.21 
3 0.49 0.29 0.22 
4 0.62 0.34 0.13 
5 0.57 0.31 0.14 
6 0.63 0.35 0.10 
7 0.59 0.33 0.11 
8 0.58 0.33 0.10 
 
Note: PBC (maximal value preferred), ASW (maximal value preferred) and HC (minimal value preferred) 
 

Table 4. Values of CJBM statistics of all six clusters of the OM optimal solution 
 
CJBM Cluster 1 Cluster2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 
SA-6 0.57 0.66 0.54 0.49 0.45 0.76 NA 
SA-7 0.62 0.69 0.54 0.42 0.48 0.46 0.76 
 
 
     The final step is to interpret the cluster solution. 
Figure 2a presents a sequence index plot to show 
how individuals within each cluster move between 
states over time. Figure 2b shows a sequence 
medoid plot that presents the sequence with the 
smallest average distance to the other sequences in 
the pertaining cluster. In Figure 2a, cluster 1 mainly 
consists of sequences starting as ’single’ (S) 
followed by a transition to ’single with children’ 
(SC). This suggests that a meaningful label to this 
cluster could be ’single motherhood’, which is 
confirmed by the sequence medoid plot shown in 
Figure 2b. Figure 2b shows that the medoid 
sequence of cluster 1 spent a spell of 43 months as 
Single (S), followed by a spell of 101 months being  

 
 
single with children (SC). Based on the 
interpretation of these plots, labels are assigned to  
all six clusters. Next to the ’single motherhood’ 
cluster (8.9% of the cohort), we found a cluster that 
we label ’pregnancy-triggered marriage’ (18.3%) as 
these sequences often have less than nine months 
between marriage and parenthood, a cluster 
labeled ’traditional marriage’ as marriage is usually 
followed rather soon by motherhood (29.7%), a 
cluster labeled ’late marriage’ (18.5%), a cluster 
labeled ’cohabitation’ as many of these sequences 
are characterised by spells of cohabitation either 
with or without children (8.8%), and finally a cluster 
labeled ’singlehood’ (15.6%). 
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(a) 

 
 

(b) 
 
Figure 2. Sequence Index plot (a) and Sequence Medoid plot (b) of the OM-6 solution 
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LCA Typology 
     The first step in a LCA is to decide on the number 
of classes to generate. In a stepping-stone paper, 
Frahley & Rafterey (1998, Figs. 3 and 4) 
demonstrated how BIC can be used for cluster-
model comparison. Within one type of covariance-
structure, these authors plotted the BIC for 
different numbers of clusters, expecting the BIC to 
first decrease and then increase again around the 
optimal number of clusters. Here, following the 
principle set out by these authors, we compare LC-
models that only differ in their number of clusters. 
So, theoretically, one could expect BIC first to drop 
drastically with the increase in the number of 
classes, followed by a slow decrease and finally by 
an increase again, the latter due to the large 
number of parameters estimated. High relative 

entropy (close to 1) indicates good model fit and 
therefore a desirable number of latent classes. In 
Table 5, the observed BIC and relative entropy 
values of the 2- to 8-class solutions are presented. 
The BIC and relative entropy values of the LCA 
typology in our example do not exactly show the 
expected pattern. One observes a drastic decrease 
in BIC values up to about a five-class solution and a 
much slower decline up till an eight-class solution. 
Relative entropies for all solutions are close to 1, 
suggesting high certainty in classification. Given 
that all entropies are close to 1, it is hard to base 
model-selection on relative entropy. The decrease 
in BIC obviously slows down after five classes, and 
we decided to examine the six- and seven-class 
solutions in more detail. 

 
 

Table 5. Values of latent class analysis model fit statistics: BIC (minimal value preferred), and 
relative entropy (closest to one value preferred) 
 
Number of clusters BIC*106 relative entropy 
2 3.0 0.9993 
3 2.6 0.9992 
4 2.3 0.9982 
5 2.1 0.9980 
6 2.0 0.9979 
7 1.9 0.9976 
8 1.8 0.9975 
 
 
 
     The interpretation of the LCA typology can be 
facilitated by sequence index plots and sequence 
model state plots (Figures 3 and 4). The six-class 
solution (for short: LCA-6, presented in Figures 3a 
and 3b) partitions female respondents into classes 
that we interpret as ’singlehood’ (16.4%), ’childbirth 
outside marriage’ (13.6%), ’traditional marriage’ 
(21.2%), ’late marriage’ (16.8%), ’cohabitation 
without children’ (9.2%), and ’pregnancy-triggered 
marriage’ (22.8%). LCA-7 (Figures 4a and 4b) 
generates five classes that are quite comparable to 
LCA-6, namely ’singlehood’ (16.4%), ’late marriage’  

(17.0%), ’traditional marriage’ (21.5%), ’pregnancy-
triggered marriage’ (21.2%), and ’cohabitation 
without children’ (9.2%). The main difference with 
LCA-6 is that instead of one class dominated by 
sequences with children outside marriage, there are 
now two classes. One of them can be interpreted as 
’cohabitation with children’ (6.1%), and the other as 
’single motherhood’ (8.6%). As it is hard to judge 
which class number is optimal, we decide to 
compare both solutions to the SA-6 solution in the 
next section. 
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     (a)          (b) 
 
Figure 3. Sequence Index plot (a) and Sequence Model State plot (b) of the LCA-6 solution 
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(a)        (b) 

Figure 4. Sequence Index plot (a) and Sequence Model State plot (b) of the LCA-7 solution 
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Typology Comparison 
     As a first step in the typology comparison, we 
simply compare the frequency distributions of each 
cluster or class in SA and LCA solutions. SA-6 and 
both LCA typologies have four major clusters in 
common. These are ’pregnancy-triggered marriage’, 
’late marriage’, ’traditional marriage’ and 
’singlehood’. As shown in Figure 5, the traditional 
marriage cluster is somewhat larger in the SA-6 
solution (30%) than in either of the LCA solutions 
(around 21%). In reverse, the pregnancy-triggered 
marriage cluster is somewhat smaller in SA-6 (18%) 
than in both LCA solutions (around 22%). The late 
marriage cluster (17%) and the singlehood cluster 
(16%) roughly match each other in all three 
typologies. The smaller clusters differ considerably, 
both between the SA and LCA solutions, and 
between the two LCA solutions. In SA-6, the two 
smaller clusters are single motherhood (9%) and 

cohabitation (9%). In the LCA-6 solution, the two 
smaller clusters are interpreted as childbirth 
outside marriage (14%) and cohabitation without 
children (9%). In the LCA-7 solution, the three 
smaller clusters are labeled as single motherhood 
(9%), cohabitation with children (6%) and 
cohabitation without children (9%). Note that the 
cohabitation cluster in the SA solution includes both 
cohabiters with and without children. Besides, the 
LCA-6 solution combined single motherhood and 
cohabitation with children into one class. Only in 
the LCA-7 solution do these three groups form 
separate clusters. Thus, the key difference between 
the three classifications is the way that cohabiters 
with children are classified. They are classified 
separately in the LCA-7 solution, grouped together 
with single mothers in the LCA-6 solution and 
grouped together with cohabiters with children in 
the SA-6 solution. 

 

 
Figure 5. Percentage of respondents in the four large clusters or classes of OM-6, LCA-6 and LCA-7 
 
     Given that the substantive interpretation and 
labeling of SA-6 and LCA-7 were quite similar, we 
use these cluster solutions to illustrate the 
usefulness of cross-tabulation (Table 6). If the 
typologies would be exactly the same, there would 
be a permutation of its rows and columns such that 

only the diagonal elements would have positive 
values, whereas the rest of the table would be 
empty; when the numbers of classes in the two 
typologies differ, one may expect that members of 
one class in the one typology are distributed over a 
small number of classes in the other typology 



Han, Liefbroer, Elzinga              Comparing methods of classifying life courses…  

 

334 
 

(Agresti, 2001). Five classes in SA-6 and LCA-7 
received the same label. In Table 6, we observe that 
most of the sequences that were assigned to these 
classes in the SA solution were assigned to the same 
class in LCA-7. In all, 73% of sequences are assigned 
to clusters with roughly the same substantive 
interpretation in both analyses. The major 
difference between SA-6 and LCA-7 is that the 
former only has one cluster with sequences 
dominated by cohabitation, whereas the latter 
contains two clusters, one dominated by sequences 
of cohabitation without children and one 
dominated by sequences of cohabitation with 
children. Table 6 shows that the sequences that are 
assigned to the cohabitation cluster in SA-6 are 
almost equally split between the two cohabitation 
clusters in LCA-7. Four additional differences are 
found between SA-6 and LCA-7. Of those sequences 
that are classified as traditional marriage in SA-6, 

3.6% are classified as late marriage in LCA-7. 
Another 3.0% of the traditional marriage sequences 
in SA-6 are classified as pregnancy-triggered 
marriages in LCA-7. Thus, it seems that the 
traditional marriage cluster in SA-6 encompasses a 
broader range of marriages than the traditional 
marriage cluster in LCA-7. Similar results hold for 
the late marriage cluster in SA-6. About 3.3% of the 
sequences in this cluster are classified as 
cohabitation without children in LCA-7, and another 
2.1% as single in LCA-7. A comparison of the 
sequence index plots in Figures 2a and 4a shows 
that some cohabiters who married at a relatively 
late age, are classified as late marriage in SA-6 but 
as cohabiters without children in LCA-7. Similarly, 
some respondents who had been single for most of 
the time and only married just before turning 30 are 
classified as late marriage in SA-6 and as single in 
LCA-7. 

 
 
Table 6: Cross tabulation of LCA and SA typology solutions, values shown as percentages 
 
     LCA/SA   Cohab Lmarriage Pmarriage Smothers   Single Tmarriage 
Cohab with c 4.14 0.00 0.04 0.45 0.00 1.50 
Cohab without c 3.80 3.27 0.00 0.93 1.10 0.06 
Lmarriage 0.12 13.03 0.00 0.11 0.17 3.62 
Pmarriage 0.01 0.00 17.88 0.30 0.00 3.02 
Smothers 0.75 0.08 0.32 6.46 0.00 0.96 
Single 0.00 2.08 0.00 0.01 14.34      0.00 
Tmarriage 0.03 0.05 0.09 0.69 0.00 20.63 
 
Cohab = Cohabitation, Lmarriage = Late marriage, Pmarriage = pregnancy-triggered marriage, Smother = 
single mother, Tmarriage = Traditional marriage, Cohab with c = Cohabitation with children, and Cohab 
without c = Cohabitation without children 
 
 
     The adjusted Rand index for the cross-
classification of SA-6 and LCA-6 is 0.59, 0.67 for the 
cross-classification of SA-6 and LCA-7, and 0.88 for 
the cross-classification of LCA-6 and LCA-7. 
Evidently, LCA-6 and LCA-7 have a large overlap, but 
also SA-6 and LCA-7 are highly comparable. 
     Which typology to prefer? Based on our 
discussion of construct validity, the strength of the 
statistical relationship between class membership 
and relevant background variables can be used to 
judge the quality of the typology. The stronger the 
relationship between class membership and other 
variables that are expected to be related to that 
typology, the better the typology performs. 

Therefore, we use class membership as the 
independent variable in multinomial logistic 
regression models predicting a series of relevant 
background variables. In this example, we use four 
external variables: level of education, parental 
divorce, level of religiosity and country. Some 
variables are not available for all countries, and 
respondents from these countries are excluded in 
the relevant analyses. To balance the analysis, we 
compare not only SA-6 with LCA-6 and LCA-7, but 
also add SA-7, even though the cluster quality 
statistics in Table 3 clearly favor SA-6 above SA-7. 
BIC’s of all four typologies for all four dependent 
variables are presented in Table 7. 
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     The BIC’s of SA-6 are always lower than those of 
SA-7, implying that the added complexity of SA-7 
does not improve the predictive power of the 
typology sufficiently to warrant the additional 
complexity.  
Things are less clear-cut for the LCA typologies. 
Based on the BIC’s for predicting parental divorce 
and religion, LCA-6 seems superior to LCA-7, while 
for predicting education and country, LCA-7 seems 
superior to LCA-6. To understand this, it is 
important to remember that in LCA-6, single 
motherhood and cohabitation with children are 
jointly classified in one class ’childbirth outside 
marriage’, while in LCA-7, these are separate 
classes. For predicting parental divorce and religion, 
the distinction between single motherhood and 
cohabitation with children does not improve model 
fit, suggesting that those classified as single 
mothers and those classified as having a childbirth 
within cohabitation do not differ much in terms of 
their odds of experiencing a parental divorce or of 
being religious. However, for predicting education 
and country, distinguishing these two groups 
improves model fit. This suggests that those in the 
‘single motherhood’ class and the ‘cohabitation 
without children’ class differ significantly from each 
other in terms of their distributions across countries 

and across levels of education. To provide a better 
interpretation of the meaning of this latter 
difference, we calculate predicted probabilities 
(Figure 6) of having no further education after age 
15. In LCA-6, those classified as ’childbirth outside 
marriage’ have a 47% chance of having no 
education after age 15. In LCA-7, this group is split 
and those classified as single mothers have a higher 
chance of no additional education (48%) than those 
classified as having a child within cohabitation 
(43%). Whether to prefer the LCA-6 or LCA-7 
models, depends on how substantively meaningful 
these differences in educational distributions are. 
We view them as substantively meaningful, as they 
show that single motherhood is more strongly 
linked to social disadvantage than having a child 
within cohabitation, and thus we prefer LCA-7 to 
LCA-6.  
     Finally, to choose between the SA-6 and LCA-7 
classifications, BIC-values of the models with these 
two typologies were compared. Table 7 shows that 
the BICs for all background variables are lower for 
the LCA-7 typology than for the SA-6 typology. 
Therefore, we conclude that in in this particular 
illustration the LCA-typology is superior to the SA-
typology. Overall, choosing LCA-7 seems the best 
decision. 

 
 

Table 7. BICs of SA (OM 6 and OM 7) and LCA (LCA 6 and LCA 7), based on multinomial logistic 
regression models  
 
 Education Parental divorce Religion Country 
OM 6 21612.34 8970.52 20308.92 51758.54 
OM 7 21626.74 8986.59 20333.26 51813.44 
LCA 6 21448.98 8909.06 20225.49 51583.76 
LCA 7 21441.70 8927.17 20230.11 51442.98 
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(a) 

 

(b) 

Figure 6: Predicted probabilities of “no education after age 15” using a multinomial logistic 
regression model for (a) the LCA-6 solution and (b) the LCA-7 solution 
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Discussion and conclusion 
     The key question discussed in this article is 
whether quite different approaches to develop life 
course typologies, sequence analysis (SA) and latent 
class analysis (LCA), lead to the same typologies, 
and whether it is possible to decide on which of 
these typologies is to be preferred.  
     We emphasise three main contributions of this 
article. First, we suggest a number of statistical 
tools that aid decision-making about the optimal 
number of clusters or classes. We propose that one 
should make use of a combination of statistical 
information and substantive interpretation. The 
choice of the number of clusters in SA can be 
facilitated by using cluster quality statistics – 
whereas the use of BIC plots supports the choice 
process in LCA. 
     The second contribution of this paper is its 
suggestion to consider cluster stability as an 
important aspect of cluster quality.  
     Our third, and major, contribution consists of our 
proposal to validate the obtained typologies by 
examining their association with other variables 
that are known or expected to be related to the 
pertaining life course trajectories. This approach is 
based on the idea of construct validity that is 
central to measurement theory. Analogously, we 
argue that one can evaluate the quality of a 
typology by examining how strongly it relates to 
other variables within its nomological network. This 
validation approach is not confined to comparing SA 
and LCA, but can also be used to compare 
typologies obtained by using other distance metrics 
within SA or by using other clustering methods 
applied to the same metric. 
     Our presentation of SA and LCA was illustrated 
by a substantive comparison. As we emphasised 

throughout our presentation, many different 
decisions have to be taken within each approach, 
and each one of them has to be based on a 
combination of substantive and statistical evidence. 
In Appendix 1, the main practical challenges facing 
both methods are discussed. 
     Our example illustrated the steps to be taken 
when performing SA and LCA. One of the 
interesting results is that the resulting typologies 
were quite comparable: the adjusted Rand-index is 
close to 0.7. Thus, the question arises whether or 
not this result is a coincidence. To shed light on this 
question, we elaborated on an old idea of Joseph 
Kruskal, and present our findings in Appendix 2. Our 
reasoning suggests that SA and LCA will most often 
lead to the roughly the same typologies. 
     In a recent article, Mikolai and Lyons-Amos 
(2017) compared SA to Latent Class Growth Models 
(LCGM), a type of LCA that takes the temporal 
ordering of events into account. Theoretically, 
LCGM’s have the advantage over the simple LCA 
model that the former incorporates the ordering of 
events in the life course whereas the latter does 
not. In practical terms, estimating LCGMs with a 
larger number of observable states and almost ten 
times as many respondents is practically infeasible 
However, Mikolai and Lyons-Amos obtained 
interesting results comparing LCGM to SA and also 
showed that in practice, results are roughly the 
same.   
     Summarising, we tried to expand upon the 
pioneering research by Barban & Billari (2012) by 
proposing guidelines on performing and comparing 
SA- and LCA-based typologies and by introducing a 
number of useful statistical tools to aid in choosing 
between competing typologies. 
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Endnotes 
 
i In the present context, picking the “right” clustering technique is an unsolved problem since there is no 

generally accepted idea about the “structure” of life-course sequence data. Without such an idea, the 
choice of a clustering method is more or less arbitrary. For example, we know that some clustering 
techniques are well suited for sets of variables that have non-elliptical multivariate normal distributions 
with equally sized subpopulations (most hierarchical methods) or work well with particular distance 
measures (PAM). However, in the context of SA, we do not directly observe these underlying variables but 
only a diffuse summary measure: a distance between sequences. Bayne, Beauchamp, Begovich and Kane 
(1980), using bivariate distributions, tested thirteen different techniques for their classification accuracy. 
Their last, concluding sentence is “However, as the complexity of the distributions increases, the differences 
between all of these methods decrease”. Unfortunately, this sentence still well summarises the state of 
affairs in unsupervised partitioning of distance matrices.  Therefore, it is not surprising that often, in the 
present context, (agglomerative) hierarchical clustering is chosen: most people enter a phase of family 
formation during their early adulthood and, most often, this involves partnering and reproduction. It is not 
unreasonable to consider variation in this general pattern has a hierarchical structure and thus a 
hierarchical clustering seems warranted. Moreover, hierarchical techniques have the advantage of easily 
visualisable results in the form of a dendrogram. Although PAM is a good alternative, we decided to use 
Ward’s agglomerative hierarchical method since it is by far the most frequently chosen. Of course, this 
method has disadvantages, which have been amply documented in the vast literature on clustering 
methods. Unfortunately, good alternatives like PAM also have disadvantages. Therefore, whichever 
method is picked, substantive validation of a cluster solution is of vital importance. Comparing different 
clustering methods in the context of SA is, even if possible at all, beyond the scope of this paper. 

 
ii  Latent class analysis is the simplest form of all latent structure models. There are other models that 

consider time-dependence of the sequences, such as Markov models. However, LCA is sequence oriented 
with the fewest assumptions (local independence). Therefore, it is the only latent structure model that can 
be sensibly compared to SA. 

 
iii Country weights were not available for all countries. Given the illustrative purpose of our example, we 

decided to use unweighted data. 
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