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ARTICLE INFO ABSTRACT

Keywords: The processing of reinforcers and punishers is crucial to adapt to an ever changing environment and its dysreg-
Reward ulation is prevalent in mental health and substance use disorders. While many human brain measures related to
LOSS' reward have been based on activity in individual brain regions, recent studies indicate that many affective and
Fmri . motivational processes are encoded in distributed systems that span multiple regions. Consequently, decoding
Neural signature TN . . . - e L

Decoding these processes using individual regions yields small effect sizes and limited reliability, whereas predictive models

based on distributed patterns yield larger effect sizes and excellent reliability. To create such a predictive model
for the processes of rewards and losses, termed the Brain Reward Signature (BRS), we trained a model to predict
the signed magnitude of monetary rewards on the Monetary Incentive Delay task (MID; N = 39) and achieved
a highly significant decoding performance (92% for decoding rewards versus losses). We subsequently demon-
strate the generalizability of our signature on another version of the MID in a different sample (92% decoding
accuracy; N = 12) and on a gambling task from a large sample (73% decoding accuracy, N = 1084). We further
provided preliminary data to characterize the specificity of the signature by illustrating that the signature map
generates estimates that significantly differ between rewarding and negative feedback (92% decoding accuracy)
but do not differ for conditions that differ in disgust rather than reward in a novel Disgust-Delay Task (N = 39).
Finally, we show that passively viewing positive and negatively valenced facial expressions loads positively on
our signature, in line with previous studies on morbid curiosity. We thus created a BRS that can accurately predict
brain responses to rewards and losses in active decision making tasks, and that possibly relates to information
seeking in passive observational tasks.

Machine learning

1. Introduction

The processing of reinforcers, such as rewards, and punishers, such
as financial losses, is central to guiding our actions towards positively
valenced outcomes and away from negatively valenced ones (Lutz and
Widmer, 2014). Numerous functional Magnetic Resonance Imaging
(fMRI) studies have investigated the neural correlates of reward pro-
cessing and several meta-analyses have synthesized the findings of these
studies (Bartra et al., 2013, Clithero and Rangel, 2014, Diekhof et al.,
2012, Liu et al., 2011). They generally converge on two main insights:
First, receiving a reward, or a loss, evokes activity in the nucleus ac-
cumbens and surrounding ventral striatum that is hypothesized to rep-
resent a positive, or negative, prediction error signal, respectively, de-
fined as the difference between the actual outcome and the one that
was expected ((Diekhof et al., 2012, Galtress et al., 2012, Haber and
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Knutson, 2010) (O’Doherty et al., 2004)). This signal is essential for
learning as it increases the likelihood of behavior leading to better than
expected outcomes ((McClure et al., 2004, Schultz and Dickinson, 2000)
(Yacubian, 2006)) and reduces that of behavior leading to worse than
expected outcomes. Second, obtaining secondary reinforcers such as
money (but also primary reinforcers such as as food & nonfood con-
sumables etc. see (Chib et al., 2009)), recruits the ventro-medial pre-
frontal cortex (vmPFC) (Kringelbach, 2004, Sescousse et al., 2013), the
activity of which is thought to represent the subjective value of a re-
ceived good (Bartra et al., 2013, Diekhof et al., 2012, Haber and Knut-
son, 2010, Levy and Glimcher, 2012, Peters and Biichel, 2010) and is
also involved in integrating goal information and conceptual informa-
tion into this value signal (Hare et al., 2008, Plassmann et al., 2007).
Using MVPA, (McNamee et al., 2013) found that spatially distributed
patterns in the dorsal part of the vmPFC encodes goal-value informa-
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tion that is independent of stimulus category, whereas the more ventral
part of the vmPFC encodes unique category dependent value signals in
spatially distinct areas.

Most of these studies have so far used an univariate approach that
aims at identifying the locations in the brain recruited while partici-
pants process rewards. In some cases, however, the aim is not to map a
circuit involved in reward, but to perform reverse inference by asking
whether reward processing is involved in a given task X, based on the
pattern of brain activity measured at a particular moment in that task
(Poldrack, 2006). It has been shown that finding activity in a particular
region of the brain is a poor indicator of the recruitment of a particular
mental process, because most locations are recruited while engaging a
number of mental processes (Poldrack, 2006, Wager et al., 2016). In con-
trast, a pattern of activity across many voxels or scalp electrodes, that
can include reductions and increases of BOLD and EEG signal, has been
shown to be associated with a particular mental process with higher sen-
sitivity and specificity, and therefore to provide scientists with a help-
ful tool to evaluate how strongly a specific mental process is recruited
in a given task (Varbu et al., 2022, Wager et al., 2013, Yarkoni et al.,
2011). The ability to decode the degree to which someone is receiving
a reward or a loss has yet to be developed. The advantages of such a
multivariate brain model are that it leads to larger effect sizes in brain-
outcome association compared to more traditional local region-based
approaches; makes quantitative predictions about outcomes that can be
empirically falsified and can be tested and validated across studies and
labs, which promotes reproducibility (for a review on brain signatures
see (Kragel et al., 2018)).

Here we therefore aim to develop such a multivariate brain model
for reward processing - the brain reward signature (BRS) - that would
use distributed BOLD-based information within and across brain re-
gions to make population-level, between-subject predictions about the
strength of engagement of reinforcement/punishment processing. These
predictions should ideally generalize accurately across contexts, and be
able to distinguish reinforcement or punishment processing from other
categories of related mental processes, such as (emotional) salience
(Kragel et al., 2018). So far, few signatures for reward-related pro-
cesses are available (Grosenick et al., 2013) and to our knowledge none
of these have been validated on independent samples. A recent large
scale challenge to predict Autism Spectrum Disorder diagnoses from
fMRI (>146 team & fMRI from > 2000 individuals) highlighted the im-
portance of validating predictive models in independent datasets be-
cause model development on a given dataset faces the risk of overfit-
ting. Specifically, techniques such as cross-validation to measure predic-
tive performance are not completely robust to systematic exploration of
analytic choices, because the models may overfit on noise that is spe-
cific to the data set the models are trained on. Consequently, our study
thus further contributes by validating the BRS in three independent
samples.

In this study we use a predictive modeling approach (Kragel et al.,
2018) that has been successfully employed to explore the neural repre-
sentation of various affective processes, including the degree of phys-
ical pain (Wager et al., 2013), vicarious pain (Krishnan et al., 2016),
social rejection (Woo et al., 2014), unpleasant pictures (Chang et al.,
2015), basic emotions ((Kragel et al., 2016, Kragel and LaBar, 2015,
Lindquist and Barrett, 2012, Wager et al., 2015), empathy (Ashar et al.,
2017), guilt (Yu et al., 2020), and also faces and object categories
(Haxby et al., 2001), intentions (Haynes et al., 2007, Soon et al., 2013),
semantics (Huth et al., 2012, Huth et al., 2016) and clinical conditions
(Arbabshirani et al., 2017, Woo et al., 2017). Our primary goal is to cre-
ate a signed relative BRS. Specifically, the objective is to create a signa-
ture that generates more positive values for conditions associated with
higher rewards, and more negative values for conditions associated with
higher losses. Additionally, the signature should be specific: it should
not generate high pattern responses in datasets in which reinforcement
or punishment processing should be absent, but other positive or neg-
ative emotions were evoked, such as disgust or guilt. Third, it should
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generalize across studies, samples and contexts where the same neu-
rocognitive processes are engaged (i.e., be generalizable).

Based on our aim to generate a signed relative signature, we trained
and tested a LASSO-PCR model (least absolute shrinkage and selec-
tion operator-regularized principal components regression; Wager et al.,
2011, 2013) to predict the signed magnitude of reward received in the
Monetary-Incentive-Delay task (MID, N = 39; see Methods) to estab-
lish the BRS and test its performance as quantified based on the cor-
relation coefficient between the actual reward value and the pattern
response from the neural signature. The pattern response is defined as
the dot product between the BRS and the parameter estimates from a
given condition and task plus the intercept. The MID was used because
it is the most consistently used task to investigate the neural correlates
of reward processing in humans (more than 200 MRI studies until now
(Oldham et al., 2018) and has been designed on the basis of findings
that reward anticipation engages dopaminergic neurons in the ventral
tegmental area (VTA; (Knutson et al., 2000)). One strength of the MID
is that it allows modeling a simple decision, which reduces the cogni-
tive confounds that are associated with more complex decision making
(Balodis and Potenza, 2015, Knutson and Greer, 2008, Lutz and Wid-
mer, 2014), reliably. Further, the MID robustly engages the striatum,
which is crucial in reward and reinforcer processing (Haber and Knut-
son, 2010). To further probe the performance but also the generalizabil-
ity, we then applied the BRS to a different version of the MID (with 5 in-
stead of three levels of reward; N = 12) from different participants using
different scanners and scanning protocols (Srirangarajan et al., 2021).
Besides that, we also tested the BRS in a completely different task with
monetary outcomes using a block design instead of an event-related de-
sign on a large sample (1084 subjects) to thoroughly evaluate the gen-
eralizability of the predictions from our signature map. In addition, to
examine the specificity of the BRS, we employed the novel Disgust-Delay
Task (DDT, N = 39; Fig. 1D), which evokes neural patterns associated
with disgust. In this task, we aimed at exploring whether the signature
is specific to monetary rewards and losses or rewarding outcomes more
generally (i.e. positive versus negative feedback) and whether it is spe-
cific to reward or generalizes to emotional salience (i.e. disgusting ver-
sus neutral outcomes). The DDT was chosen because it is similar in task
structure and solely differs in the neurocognitive processes it is designed
to elicit. To test specificity across a wider range of emotions and gen-
eralizability to different experimental paradigms, we evaluated the pre-
dictions of the BRS on the Emotion Viewing task, in which participants
passively view actors expressing positive (happiness), neutral and neg-
ative (anger, disgust, fear, pain, sadness) emotions. Collectively, data
from 5 different fMRI tasks and four independent samples (N = 1169)
were used to train and test the BRS. It is important to note that testing
specificity is an open ended process, as numerous different conditions
unrelated to outcome processing can be tested, but this is a preliminary
validation.

As we are interested in investigating the neural underpinnings of
the reinforcement vs punishment processing more generally and not the
neural correlates of how much exactly someone earns on the MID, our
performance assessment focuses on the signature’s relative performance,
i.e., whether the signature can predict differences in rewards across con-
ditions. This is because it has been consistently shown across species that
value-based choice behavior is context dependent (Bateson et al., 2003,
Huber et al., 1982, Shafir et al., 2002) (Bateson et al., 2003). Specifi-
cally, it has been found that how a chooser decides between any two
options depends on the number or quality of other options in multi-
dimensional attribute space ((Huber et al., 1982); Louie et al., 2013).
This context-dependence of value based decisions is hypothesized to be
implemented on the neural level by means of divisive normalization
(Louie et al., 2011, Louie et al., 2013, Louie et al., 2014), where the
response of a given neuron is divided by the summed activity of a larger
neuronal pool (Carandini and Heeger, 2012). This divisive normaliza-
tion thus produces context dependence, where the value of an option is
explicitly contingent on the value of the other available options, which
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Fig. 1. A) Example trial of the MIDtrain task: Each trial started with a cue informing participants about the money that can be obtained or lost. Subsequently,
participants were presented with a fixation cross for a variable amount of time (2-3 s) and the target in the form of a white square appeared for a variable amount
of time. Afterwards, participants were informed whether they hit or missed and the associated monetary outcome was presented. Lastly, another fixation cross was
presented for a variable amount of time (3-5 s). B) Example trial of the MIDval task. The differences to the MIDtrain consisted of differences in timing and number
of conditions. C) Example trial of the Gambling task from the HCP: Each trial began with the presentation of the mystery card represented by the question mark and
as soon as the participants responded, a fixation cross was presented. Next, participants received feedback about the outcome for 1 s. Lastly, another fixation cross
was presented for 1 s. D) Example trial of the DDT: Each trial began with the presentation of a fixation cross (2-3 s) followed by a target which was presented for a
duration that adapted to the participants’ performance. Next, participants received feedback (2-3 s), viewed another fixation cross (2-3 s) and were then presented
with a disgusting or neutral image contingent on their performance. The trials were separated by a fixation cross (3-5 s). E) Example trial of the EVT: Each trial began
with the presentation of a fixation cross for a jittered period between 3-10s. Next, participants viewed a video of an actor (four different actors in total) expressing
one of 6 emotions (anger, disgust, fear, happiness, pain, sadness) at two different intensities (high and low) or a neutral demeanor for 1s. F) Example trial of the
Emotion Rating Task, in which participants had to rate how interesting they found the presented video on a scale from 1 to 10. Only the neutral demeanor and
the high intensity emotions from the Emotion Viewing task were used. Participants did not have time constraints to give the response (median reaction time=3.7s
[Q1=2.95 Q3=5.0s], and the next trial started immediately after the response was given.

allows efficient coding of information in changing environments. There-
fore, our feature selection procedure was based on correlations between
actual and regression-predicted rewards, to capture the relative predic-
tive performance, not the absolute predictive performance. This focus
on within-subject differences between conditions also has the advan-
tage of being less sensitive to confounding individual differences such
as vascular response properties.

2. Methods

For this project, data from five different studies were used. First,
to establish the BRS, the Monetary-Incentive-Delay task (MID; Fig. 1A)
with three levels of monetary outcomes (+5€, O€, -5€) was used, which
will from now on be referred to as MIDy,,;,. To test whether the BRS
generalizes to the MID task with five levels of monetary outcomes
(+5€, + 1€, O€, -1€, -5€) from different participants using different scan-
ners and scanning parameters, openly available data from Srirangarajan
and colleagues (2021) was used (Fig. 1B). This dataset will from now

on be referred to as MID validation task (MID,,). In addition, to in-
vestigate whether the BRS is able to predict differences in reward in a
different task with monetary outcomes using a block design instead of
an event related design we utilized the Gambling task (Fig. 1C) from
the Human Connectome Project (HCP). Further, to assess the construct
validity and test whether the signature is specific to monetary reward,
we applied it to a moral conflict learning paradigm, in which partici-
pants learn that one action leads to high-monetary rewards for them-
selves and a high-shock to someone else, while the other action leads
to low monetary rewards for self and a low-shock to someone else. The
results of this analysis are reported elsewhere (Fig. 8 and Supplemen-
tary Table 9; Fornari et al., under revision, and included in the reply to
reviewers). Finally, to assess whether the BRS generalizes to negative
emotional salience, we employed the novel Disgust-Delay Task (DDT;
Fig. 1D). While all the above task explore the processing of outcomes
that are contingent on participant’s choices, to characterize the tuning
of the BRS during passive viewing of other people’s emotions, we ap-
plied it to an unpublished dataset from our laboratory that includes a
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novel Emotion Viewing task (EVT; Fig. 1E). As we found that viewing
negative facial expressions loaded positively on the BRS, a finding that
has been associated with information seeking, we performed an online
behavioral study (Emotion Rating Task, ERT; Fig. 1F) that confirmed
that participants find negative and positive facial expressions more in-
teresting than neutral facial expressions.

2.1. Participants

For the MID,,,;, and the DDT task the same 40 participants were used
which were collected from a university sample. One participant had a
hit rate of zero in both tasks, indicating that the participant never expe-
rienced reward. We thus excluded this participant from the analysis. The
remaining 39 participants (Mage =23.62, SDage = 3.17; 28 females) were
right-handed with normal or corrected to normal vision, spoke English
fluently, were not on any psychoactive medication influencing cognitive
function, and had no record of neurological or psychiatric illness. The
study was approved by the Erasmus Research Institute of Management
(ERIM; Protocol NR: 2018/02/06-61976ssp) internal review board and
was conducted according to the Declaration of Helsinki.

For the MID,,;, nineteen subjects completed the MID task while being
scanned with a multi-band acquisition protocol. According to the pre
registered exclusion criteria, data from three subjects were excluded due
to excessive motion during at least one of the three task runs, while data
from four subjects were excluded due to equipment failure (i.e., faulty
response registration by a new button box), leaving twelve subjects total
for analyses. For the justification of the sample size and details about
participants see the paper by Srirangarajan and colleagues (2021) or
contact the authors (Srirangarajan and colleagues).

For the HCP gambling task, task-based fMRI recordings were used
from 1206 participants (HCP All Family Subjects). Out of these 1206
participants, 1084 had complete fMRI data for both runs of the Gam-
bling task. Additional behavioral measures on the individual partici-
pants can be downloaded from the project website (Van Essen et al.,
2012). Individual demographic data is unavailable for these datasets due
to data-privacy concerns (Van Essen et al., 2012), but summary demo-
graphic data for the 1206 participants (of which only 1084 performed
the gambling task and are used here) were reported as Mg = 29.31,
SD,ge = 3.67; 657 females. For the EVT, 34 participants were used which
were collected from a university sample. Three subjects were excluded
due to missing data and four additional subjects were removed due to ex-
cessive image distortion. The remaining 27 participants (Mg = 23.04,
SDgge = 2.29; 12 females) were right-handed with normal or corrected
to normal vision, spoke English fluently, were not on any psychoactive
medication influencing cognitive function, and had no record of neuro-
logical or psychiatric illness. The study was approved by the University
of Amsterdam (UvA; Protocol 2019-EXT-11148) Ethics Review Board of
the Faculty of Social and Behavioral Sciences and was conducted ac-
cording to the Declaration of Helsinki. All participants were reimbursed
for their participation with 10€/hour.

For the ERT 200 participants (Mgg, = 26.33, SDgq, = 9.439; 96 fe-
males) completed five separate experiments that included 40 individu-
als each. Participants were recruited online from Prolific (https://www.
prolific.co/), with previous participation in other studies from the lab as
exclusion criteria. The study was approved by the University of Amster-
dam (UvA; Protocol 2022-EXT-15474) Ethics Review Board of the Fac-
ulty of Social and Behavioral Sciences and was conducted according to
the Declaration of Helsinki. Participants’ remuneration was 7.5€/hour.

2.2. Task and Stimuli

2.2.1. Monetary-Incentive-Delay task (MID;,;,)

The MID,,,;, consisted of 108 trials of approximately 9 s each. Dur-
ing each trial, participants saw one of three cues (cue phase, 1 s), were
then asked to fixate on a crosshair as they waited a variable interval (de-
lay phase, 2000-3000 ms), and then responded to a white target square
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that appeared for a variable length of time (target phase, 150-450 ms)
with a button press (Fig. 1A). Feedback (outcome phase, 1 s), which
followed the disappearance of the target, notified participants whether
they had won or lost money during that trial. On incentivized trials,
participants could win or avoid losing money by pressing the button
during target presentation. On neutral trials, no money could be won
or lost. Task difficulty, in the form of the length of time the target was
presented, was set adaptively throughout the task such that each par-
ticipant should succeed on 66% of his or her target responses. This was
done to make subjects with different performance levels comparable
and prevent participants from getting frustrated. Cues signaled poten-
tial reward (+ 5.00 €), potential loss (- 5.00 €), or no monetary outcome
(0 €). Trial types were pseudo-randomly ordered within each session
(Knutson et al., 2000). Participants were instructed that at the end of
the experiment one trial would randomly be chosen and that the per-
formance on this trial would determine their remuneration. In the MID
task we focus on the feedback phase as we are interested in the neural
response associated with receiving a monetary outcome. We acknowl-
edge that we re-used text for the task description from (Knutson et al.,
2000)).

2.2.2. MID,y

Since the main goal of the study by Srirangarajan and colleagues
(2021) was to examine whether acquiring fMRI data with multi-
band versus single-band scanning protocols compromises detection of
mesolimbic activity during reward processing, the fMRI data was col-
lected in three runs. Importantly, the MID task was identical across all
three runs. The MID,,; was similar to the MID,.,;, with some excep-
tions. First, the MID,,; included six task trial conditions: a large gain
condition (+5.00 $); a medium gain condition (+1.00 $); a no gain con-
dition (+ $0.00); a no loss condition (- $0.00); medium loss condition
(- 1.00 $); and a large loss condition (-5.00 $). Each trial condition
was repeated 12 times in a pseudorandom order, totalling 72 trials. Fur-
thermore, timing differed slightly. The cue phase was now 0-2 s, the
delay phase was 2—4 s, the target phase appeared briefly between 4-4.5
s, the outcome phase lasted 6-8 s, and the Inter-Trial Interval lasted 2,
4, or 6 s. Thus, each trial lasted an average of 12 s (including the ITI).
As before, adaptive timing of target duration within condition ensured
that subjects succeeded in “hitting” targets on approximately 66% of
the trials (Knutson et al., 2005). Thus, each MID task run lasted 864
s in total (approximately 14.4 min), and all three runs were acquired
during a single session, but with counterbalanced ordering across sub-
jects. We acknowledge that we re-used text for the task description from
Srirangarajan and colleagues (2021).

2.2.3. Gambling task from the Human Connectome Project (HCP)

This task was adapted from the Gambling task developed by Del-
gado and Fiez (Delgado et al., 2000). Participants played a card guess-
ing game where they were asked to guess the number on a mystery card
(represented by a “?”) in order to win or lose money (Fig. 1C). Partici-
pants were told that potential card numbers ranged from 1-9 and were
asked to indicate whether they expected the mystery card number to
be more or less than 5 by pressing one of two buttons on the response
box. Feedback was the number on the card generated by the program
as a function of whether the trial was a reward, loss or neutral trial, and
could result in: 1) a green up arrow with “$1” for reward trials, 2) a red
down arrow next to -$0.50 for loss trials; or 3) the number 5 and a gray
double headed arrow for neutral trials. The “?” was presented for up to
1500 ms (if the participant responds before 1500 ms, a fixation cross was
displayed for the remaining time), followed by feedback for 1000 ms.
There was a 1000 ms ITI with a “+” presented on the screen. The task
was presented in blocks of 8 trials that are either mostly reward (6 re-
ward trials pseudo randomly interleaved with either 1 neutral and 1 loss
trial, 2 neutral trials, or 2 loss trials) or mostly loss (6 loss trials pseudo-
randomly interleaved with either 1 neutral and 1 reward trial, 2 neutral
trials, or 2 reward trials). In each of the two runs, there were 2 mostly
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reward and 2 mostly loss blocks, interleaved with 4 fixation blocks (15 s
each). This experiment was designed to be analyzed in blocks of mainly
reward blocks and mainly loss blocks. As a consequence, here we do not
analyze a specific period within each trial, but the average activation
across several trials within each block type. We acknowledge that we
re-used text for the task description from (Delgado et al., 2000).

2.2.4. Disgust-Delay Task (DDT)

A new paradigm termed the Disgust-Delay-Task (DDT) inspired by
the MID task (Knutson et al., 2000) was developed (Fig. 1D). In this
task, participants had to press a button during the presentation of a
target stimulus, i.e., a black rectangle. They were then informed, dur-
ing the feedback phase, about whether the trial was a success or not.
However, instead of winning money, or avoiding losing money, dur-
ing the outcome phase, participants then either saw a disgusting im-
age or a neutral image depending on their performance. Disgusting im-
ages were selected based on a pretest that ensured that these images
evoked disgust specifically and no other negatively valenced emotions
(see Appendix 1). On each trial of the DDT, participants were first pre-
sented with a fixation cross for 2-3s (Fig. 1D). Subsequently, the tar-
get stimulus was presented for 150-450 ms depending on the partici-
pants’ performance. As in the MID tasks above, an adaptive algorithm
was implemented which varies the duration to ensure an equal number
of successful and unsuccessful trials (50% each). Afterwards, the par-
ticipants received feedback whether or not they hit the target in time
for a period that varied between 2-3 s. This was followed by another
fixation cross that varied between 2-3 s. The trial ended with the pre-
sentation of either a neutral image or a disgusting image for 4 s de-
pending on whether the participant hit or missed the target. Next, par-
ticipants had to wait for a period jittered between 3-5 s. Participants
completed 72 trials of the DDT. Here, we can thus analyse two periods
of interest. During the feedback period, we can investigate the impact
of a non-financial reinforcer (i.e., success or failure feedback) on brain
activity. During the outcome phase, we can investigate the impact of
neural response to the experience of disgust triggered by the disgusting
images.

2.2.5. Emotion Viewing Task (EVT)

The EVT will be subject to a full publication, and will only be de-
scribed briefly here. Participants viewed actors expressing six different
emotions at two different intensities. Specifically, there were four dif-
ferent actors that differed in age and gender (females aged 29, 27; males
aged: 24, 54). Each of the four actors expressed anger, disgust, fear, hap-
piness, pain and sadness at high and low intensity. In addition, the actors
also expressed neutral demeanor, with blinking as the only deliberate
movement. Thus, leading to a total 4 actors x 6 emotions x 2 intensi-
ties + 4 actors x 1 neutral = 52 videos (one more condition, a neutral
facial expression with deliberate facial movements was included in the
study but will not be analyzed or reported here). The task was admin-
istered in eight runs, in which the 52 videos were repeated in random
order. Participants were instructed to view the videos while feeling with
the actor, without moving facial muscles or silent verbalization of the
emotion name. On each trial of the EVT, participants were presented
with a fixation cross, jittered between 3-10 s, and subsequently saw a
video for 1s. In total, the whole task lasted for approximately 75 min-
utes. The stimuli had been selected from a larger pool of recorded facial
expressions based on an online validation. In the validation, participants
reported how much of each emotion (anger, disgust, fear, happiness,
pain and sadness) was visible in each video on a ten point scale. We
then selected the neutral and the low and high intensity movies for each
emotion so that (a) the average rating did not differ across the emotions
(e.g. there was as a high an angry rating for the Anger video as painful
rating in the Pain video) for a given intensity, (b) the rating was higher
for the high than the low intensity movies and (c) higher in the low in-
tensity than in the neutral movies, and (d) ratings on off-target emotions
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was minimal (e.g. a High-Disgust movie would not have high ratings on
any other emotion).

2.2.6. Emotion Rating Task

It has been argued that negatively valenced stimuli activate reward
processing, because they are more interesting than neutral stimuli, and
participants are motivated to seek information (Oosterwijk et al., 2020).
To verify the hypothesis that our positive and negative emotional facial
expressions are more interesting to watch than our neutral facial expres-
sions, a separate pool of participants (online) were asked to rate ‘How
interesting did you find this video’ on a Likert scale from 1 (Extremely
uninteresting) to 10 (Extremely interesting) on part of the movies used
in the Emotion Viewing Task. Only high intensity movies were used,
together with the neutral condition. Because there was only one posi-
tive emotion (happiness) and one neutral, but several negative emotions
(anger, fear, disgust, pain, and sadness), an imbalance that may bias re-
ports, we asked five separate pools of participants to view a balanced
set of three types of videos each: the neutral, the high intensity positive
and one of the high intensity negative facial expressions, for a total of 3
categories x 4 actors = 12 ratings each, in randomized order.

2.3. fMRI acquisition

For MIDy,;, and DDT, the fMRI images were collected using a 3T
Siemens Verio MRI system. Functional scans were acquired by a T2*-
weighted gradient-echo, echo-planar pulse sequence in descending in-
terleaved order (3.0 mm slice thickness, 3.0 x 3.0 mm in-plane resolu-
tion, 64 x 64 voxels per slice, flip angle = 75°). TE was 30 ms, and TR
was 2,030 ms. A T1-weighted image was acquired for anatomical refer-
ence (1.0 x 0.5 x 0.5 mm resolution, 192 sagittal slices, flip angle = 9°,
TE = 2.26 ms, TR = 1900 ms).

For MID,,;, all data were acquired on a 3 Tesla General Electric
scanner with a 32-channel head coil at the Stanford Center for Cogni-
tive and Neurobiological Imaging (CNI). Structural (T1-weighted) scans
were first acquired for all participants. Functional (T2 * -weighted) im-
ages for single-band and multi-band scans were then acquired using the
following common parameters: TE = 25 ms, FOV = 23.8 x 23.8 cm; 2
acquisition matrix = 70 x 70, no gap, phase encoding = PA, voxel di-
mensions = 3.4 x 3.4 x 3.4 mm. Additional parameters that varied be-
tween scanning protocols included: (1) multi-band factor = 1, TR = 2000
msec, flip angle = 77°, number of slices = 41; (2) multi-band factor = 4,
TR = 500 msec, flip angle = 42°, number of slices = 32; (3) multi-band
factor = 8, TR = 500 msec, flip angle = 42°, number of slices = 41. All
FMRI data were reconstructed using 1D-GRAPPA (Blaimer et al., 2013).
For more information about the scanning protocol please refer to the
paper by Srirangarajan and colleagues (2021).

For the HCP project, the data was collected using a customized
3T Siemens Connectome Skyra with a standard 32-channel Siemens
receiver head coil and a body transmission coil. T1-weighted high-
resolution structural images were acquired using a 3D MPRAGE se-
quence with 0.7 mm isotropic resolution (FOV = 224 x 224 mm, ma-
trix = 320 x 320, 256 sagittal slices, TR = 2400 ms, TE = 2.14 ms,
TI = 1000 ms, FA = 8°) and used to register functional MRI data
to a standard brain space. Functional MRI data were collected using
gradient-echo echo-planar imaging (EPI) with 2.0 mm isotropic resolu-
tion (FOV = 208 x 180 mm, matrix = 104 x 90, 72 slices, TR = 720 ms,
TE = 33.1 ms, FA = 52°, multiband factor = 8, 253 frames, ~3 m and
12 s/run).

For the EVT, the fMRI images were collected using a 7T Phillips MRI
system equipped with an Tx8/Rx32 rf-coil (Nova Medical). Functional
scans were acquired by a T2*-weighted gradient-echo 3D echo-planar
imaging (EPI; 1.6 mm slice thickness, 1.6 x 1.6 mm in-plane resolution,
128 x 128 voxels per slice, flip angle = 13°). TE was 19.45 ms, and
TR was 1816 ms. A T1-weighted image (MPRAGE) was acquired for
anatomical reference (0.8 x 0.8 x 0.8 mm resolution, 232 sagittal slices,
flip angle = 8°, TE = 3.29 ms, TR = 3000 ms).
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2.4. Preprocessing

For the MID,;,, MID,, and the DDT, the fMRI data were
preprocessed using fMRIPrep version 1.0.8, a Nipype based tool
(Gorgolewski et al., 2011). We chose fMRIPrep because it addresses the
challenge of robust and reproducible preprocessing as it automatically
adapts a workflow based on best-in-class algorithms to virtually any
dataset, enabling high-quality preprocessing without the need of man-
ual intervention (Esteban et al., 2019). Each T1w volume was corrected
for intensity nonuniformity and skullstripped. Spatial normalization to
the International Consortium for Brain Mapping 152 Nonlinear Asym-
metrical template version 2009c (Esteban et al., 2016) was performed
through nonlinear registration, using brain-extracted versions of both
T1lw volume and template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white matter (WM), and gray matter was performed on the
brain-extracted T1w. Field map distortion correction was performed by
coregistering the functional image to the same-subject T1w image with
intensity inverted (Caballero-Gaudes and Reynolds, 2017) constrained
with an average field map template (Tustison et al., 2010). This was
followed by coregistration to the corresponding T1w using boundary-
based registration (Smith et al., 2002) with 9 degrees of freedom. Mo-
tion correcting transformations, field distortion correcting warp, blood
oxygen level-dependent images-to-T1w transformation, and T1w to tem-
plate Montreal Imaging Institute (MNI) warp were concatenated and
applied in a single step using Lanczos interpolation. Physiological noise
regressors were extracted using CompCor (Cox and Hyde, 1997). Prin-
cipal components were estimated for the two CompCor variants: tem-
poral (tCompCor) and anatomical (aCompCor). Six tCompCor compo-
nents were then calculated including only the top 5% variable voxels
within that subcortical mask. For aCompCor, six components were cal-
culated within the intersection of the subcortical mask and the union
of CSF and WM masks calculated in Tlw space, after their projec-
tion to the native space of each functional run. Frame-wise displace-
ment (Treiber et al., 2016) was calculated for each functional run us-
ing the implementation of Nipype. For more details of the pipeline, see
https://fmriprep.org/en/latest/workflows.html. After the preprocessing
the voxel size of the images is 3*3*3.5 mm.

For the HCP data, preprocessing of the images included motion cor-
rection, distortion correction, co-registration and normalized to MNI
space as described in the HCP 1200 Subjects Release (Glasser et al.,
2013).

For the EVT, the whole brain fMRI data was preprocessed and an-
alyzed using SPM12 (7771; Wellcome Trust Centre for Neuroimaging,
UCL, UK) with MATLAB R2020b version 9.9.0 (The MathWorks Inc.,
Natick, USA). The preprocessing pipeline was organized as follows: re-
alignment to the first image of every run and then to the estimated aver-
age (two-pass), co-registration of anatomical images to the mean func-
tional image (rigid body transformation, DOF = 6), segmentation of the
anatomical scan that yields normalization parameters that were then
used to bring the EPI images to MNI-space and voxel sizes were resam-
pled to 1 x 1 x 1mm for the functional images. In order to completely
incorporate the entire brain (including cerebellar areas in all scans, the
bounding box settings were changed to [-90 -126 -72; 90 90 108], as
SPM’s default settings have been reported as a risk to omit some of the
cerebellar areas (Gazzola and Keysers, 2009).

2.5. Statistical analyses

2.5.1. MIDyy;, & MID,y

To model all possible outcomes of the MID tasks for every partici-
pant, we estimated a general linear model (GLM) using regressors for
onsets of the outcome phase for successful high reward trials (HR-won:
received +5.00 €), unsuccessful high reward trials (HR-lost: did not re-
ceive +5.00 €), successful low reward trials (LR-won: received +1.00€;
for MID,,; only), unsuccessful low reward trials (LR-lost: did not receive
+1.00€; for MID,,; only), successful neutral trials (NT-won: O €; for the
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MID,,; the neutral gain, i.e.. +0 €, and neutral loss trials, i.e. -0 € were
combined), unsuccessful neutral trial (NT-lost: 0€), successful low loss
trials (LL-won: did not lose 1.00 €; for MID, ,; only), unsuccessful low loss
trials (LL-lost: did lose 1.00 €; for MID,,; only), successful high loss trials
(HL-won: did not lose 5.00€) and unsuccessful high loss trials (HL-lost:
lost 5.00€). The duration of the epoch for the outcome phase was 1 s,
and the beginning of the outcome phase was used as onset time. Aver-
age background, WM and CSF signal, framewise displacement, six head
motion regressors, and six aCompCor (which are component based noise
correction regressors) regressors, all obtained from fMRIprep, were en-
tered as regressors of no interest. First, a smoothing kernel of 5 mm full
width at half maximum was applied. For consistency, the same smooth-
ing procedure was applied to all other datasets as well. Subsequently,
all regressors of interest (but not regressors of no interest) were con-
volved with the canonical hemodynamic response function. Linear con-
trasts were computed between HR-won and HR-lost trials, LR-won and
LR-lost trial, NT-won and NT-lost trials, LL-lost and LL-won trial, HL-
lost and HL-won trials. These contrasts were chosen to isolate the ef-
fect of receiving or losing money by means of comparing each regres-
sor with the regressor of opposite outcome within the same condition.
As a consequence, only neural activation related to receiving or losing
money should remain as all other aspects of the contrasted trials are
the same. The resulting subject level t-maps were then converted to z-
maps. Here, we use the z-maps as the primary input to our multivariate
pattern analysis because z-maps represent effect-sizes in units of vari-
ance, that should be more comparable across experiments and designs
than the simple difference between the parameter estimates, which are
in arbitrary units, or the t-maps that depend on the sample size in terms
of acquired volumes. As the purpose of the study by Srirangarajan and
colleagues (2021) was to test whether acquiring FMRI data with multi-
band versus single-band scanning protocols compromises detection of
mesolimbic activity during reward processing, the fMRI data was col-
lected in three runs. For this study we were however not interested in
the effects of scanning protocols. As a consequence, we averaged over
the z-maps for each subject across the three runs to increase the signal
to noise ratio.

2.5.2. DDT

To model the experience of disgust and the experience of viewing
neutral images we estimated a GLM using regressors for onsets of the
picture presentation phase of the DDT for the presentation of disgusting
images and neutral images. The duration of the epoch for the picture
presentation phase was 4 s, and the beginning of the picture presentation
phase was used as onset time (see Fig. 1D).

In addition, to explore whether the BRS predicts monetary outcomes
specifically or generalizes to rewarding versus loss outcomes more gen-
erally, we modeled the feedback phase of the DDT. As the structure of
the MID and the DDT are very similar the only difference here is that
instead of monetary outcome the feedback is purely motivational. The
duration of the epoch for the feedback phase was 2 s since this was the
minimum of time it lasted on every trial. We defined the feedback phase
by counting back two seconds from the onset of the Anticipation phase
(see Fig. 1D). Lastly, to have a neutral period to compare the neural pat-
terns associated with disgusting and neutral images to, we modeled the
neural activation of viewing the fixation cross at the beginning of each
trial (Motivation Delay). This period was chosen because it was most
distant in time from the picture presentation phase. The duration of the
epoch for the motivation delay was 2 s since this was the minimum of
time it lasted on every trial (see Fig. 1D). As above, average background,
WM and CSF signal, framewise displacement, six head motion regres-
sors, and six aCompCor regressors, all obtained from fMRIprep, were
entered as regressors of no interest. First, a smoothing kernel of 5 mm
full width at half maximum was applied. Next, all regressors of inter-
est (but not the nuisance regressors) were convolved with the canonical
hemodynamic response function. Linear contrasts were computed be-
tween the presentation of disgusting images and the fixation period and
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the presentation of a neutral image and the fixation period. As before,
the subject level t-maps were converted to z-maps to render them more
comparable across experiments.

2.5.3. HCP

Since the HCP gambling task was administered in a block design
and the ITIs between trials were short we employed a GLM using re-
gressors for onsets of the reward blocks, loss blocks and fixation blocks.
The duration of the reward and loss blocks were 28s each whereas the
fixation period was 15s. Twelve motion regressors (x translation in mm,
y translation in mm, z translation in mm, x rotation in degrees, y rota-
tion in degrees, z rotation in degrees, derivative of x translation, deriva-
tive of y translation, derivative of z translation, derivative of x rotation,
derivative of y rotation, derivative of z rotation), the absolute root mean
square (RMS) motion and the relative RMS motion, obtained from the
HCP preprocessing pipeline, were added as regressors of no interest. Dif-
ferent nuisance regressors were applied here as the data was obtained
in preprocessed format from the HCP website and only the 14 regressors
mentioned in the previous sentence were available. As before, as a first
step, a smoothing kernel of 5 mm full width at half maximum (FWHM)
was applied. Afterwards, all regressors of interest (but not the regres-
sors of no interest) were convolved with the canonical hemodynamic
response function. Linear contrasts were computed between the reward
block and the fixation block, the loss block and the fixation block and
the fixation block and the baseline. Again, the resulting subject level
t-maps were subsequently converted to z-maps.

2.5.4. EVT

Data were analyzed using a GLM that contained one regresser per
stimulus category (i.e. one for Anger High, one for Anger Low, one for
Pain High, one for Pain Low, ...., one for neutral), modeled as a box-
car of duration 1s aligned on each movies onset, then convolved with
the hemodynamic response function. All six head motion regressors ob-
tained from the preprocessing pipeline, were entered as regressors of
no interest. A smoothing kernel of 5 mm full width at half maximum
was applied to the EPI images. Linear contrasts were computed to sum
the parameter estimates for each video type across the runs. As before,
the subject level t-maps were converted to z-maps to render them more
comparable across experiments.

2.5.5. ERT

For each of the five pools of participants separately, ratings were an-
alyzed with paired samples t-tests that compared the negative emotion
presented for that group against happy and neutral. Student t-tests were
used for parametric data, and Wilcoxon signed-rank for non-parametric
data. Both p-values and Bayes Factor values were calculated.

2.6. Multivariate pattern analyses

2.6.1. Creation of the BRS

We used the normalized and smoothed (5mm FWHM) z-maps to de-
velop population-level reward-predictive patterns, as previous studies
suggested that smoothing could improve inter-subject functional align-
ment while retaining sensitivity to mesoscopic activity patterns that
are consistent across subjects (Etzel et al., 2011, Op de Beeck, 2010,
Shmuel et al., 2010). A LASSO-PCR model (least absolute shrinkage
and selection operator-regularized principal components regression;
(Wager et al., 2011, Wager et al., 2013)) was then trained on the whole-
brain maps from the subject level z-maps derived from the analyses de-
scribed above. The rationale behind using LASSO-PCR is twofold. First,
to deal with the fact that fMRI datasets contain many voxels with cor-
related signals that are challenging for regression analysis, LASSO-PCR
does not use each voxel as an individual predictor, but applies princi-
pal component analysis to the fMRI data to summarize the data using
orthogonal components. Next, to focus on the most informative com-
ponents, a LASSO regression is used to predict the outcome variable
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(reward magnitude in our case) from component scores, which adds a
penalty term to the model to shrink less important principal component
coefficients to zero. Specifically, the LASSO-PCR model was trained on
the z- maps (HR-won > HR-lost, NT-won > NT-lost; HL-lost > HL-won)
from the MID,,,;, to predict the 3 different levels of monetary outcome
(+5.00 €, 0.00 € & -5.00 €). For feature selection, we identified vox-
els that correlated more strongly with reward rather than salience. As
explained in the introduction, this was done to maximize relative predic-
tion performance rather than absolute prediction, because reward pro-
cessing has been found to be context dependent ((Bateson et al., 2003,
Huber et al., 1982, Louie et al., 2013, Simonson, 1989) and there are
no absolute values assigned to individual options. Specifically, given
the three parameter estimate images for each participant (High Reward:
HR-won > HR-lost, Neutral: NT-won > NT-lost, High Loss: HL-lost > HL-
won), we can consider two codings: one for outcome (1, 0, -1) and one
for salience (1, 0, 1). We can then compute the Spearman correlation be-
tween the parameter estimates V; at each voxels j and the outcome and
salience coding separately for each subject within the cross validation
loop. As we know that the spacing is uncertain, because rewards might
not be equidistant from zero as losses (Kahneman, 2011), we use the
Spearman instead of the Pearson correlation. We then selected voxels
such that r(V;, Outcome) # 0 and |r(V;, Outcome)| > |r(V;, Salience)| .
At the group level, to do this, we first performed a two-sided Wilcoxon
signed-rank test on the correlation between voxel values and outcome
coding r(V;, Outcome) and then a one-sided Wilcoxon signed-rank test on
the difference between absolute values of the correlation between voxel
values and outcome and voxel values and salience |r(V;, Outcome)| >
|r(V;, Salience)| . We then selected all voxels for which Pr(v;, Outcome) £0 <
a and Pr(v;, Outcome)|> |n(V;, Salience)] < @ where a was chosen permissively
at @=0.5 to allow for a reasonable amount of voxels to enter the LASSO-
PCR model. More conservative thresholds were also applied to test the
robustness of the findings (see Appendix 2). To reiterate the feature se-
lection procedure, we correlated for each subject the parameter esti-
mates for each of the three conditions (High Reward, Neutral & High
Loss) with the two codings (outcome and salience) at each voxel, to se-
lect the voxels that correlate more strongly with the outcome coding
than with the salience coding, while making sure that the voxels re-
spond to the outcome coding. This was done on each iteration of the
cross-validation on the training set to only allow voxels to enter the
LASSO-PCR model that respond stronger to outcome than to salience.
The feature selection and model fitting were implemented using a 5-
fold cross-validation procedure during which all participants were ran-
domly assigned to 5 different subsamples while ensuring that all images
from an individual subject remained within a subsample and does not
spread across subsamples. We always used 4 subsamples for training
and one for testing. As a result, out-of-sample prediction is always done
on new individuals, which prevents dependence across images from the
same participants invalidating predictive accuracy. We obtained pre-
dicted values by computing the dot product of the weight map com-
puted over 4 of the subsamples (at each iteration) and the z-maps of the
left out subsamples and adding the intercept computed over the four
subsamples for each subject and condition (at each iteration). To evalu-
ate the predictive accuracy of the model, the Spearman correlation be-
tween the predicted monetary outcome levels and the actual outcomes
for the left-out subsample were computed at each fold, and then the
correlations were averaged across folds. In accordance with the mass-
univariate analyses and to identify which brain regions made reliable
contributions to the model (Wager et al., 2013, Zhou et al., 2020), the
pattern maps were thresholded at p < 0.001 (two-tailed; uncorrected)
using bootstrap procedures with 5000 samples. The result was a spatial
pattern of regression weights across the whole brain that significantly
contributed to the prediction of monetary out-of-sample outcomes in
the MID,,;,. To test for robustness, we also applied a more conserva-
tive threshold at FDR p < 0.05 (two-tailed) and a procedure in which
we first selected only voxels that were non-zero in at least 90% of the
bootstrap iteration and then applied FDR correction at p< 0.05 (see Ap-
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pendix 2). We also computed the Bayes-Factor for the correlation be-
tween predicted and actual monetary outcome values to also be able to
test for evidence of absence of an effect (Keysers et al., 2020). To calcu-
late the Bayes-Factor for the correlation, Jeffreys exact Bayes Factor was
used (Ly et al., 2016) as implemented in the Pingouin python package
(Vallat, 2018). In addition, we evaluated whether the BRS ’s predictions
within a given condition (High Reward, Neutral, High Loss) are signifi-
cantly different from zero, by means of a one sample t-test against zero.
Since not all of the predictions across conditions and experiments were
normally distributed we used the Wilcoxon signed-rank test and the as-
sociated Bayes factors were computed as proposed by (van Doorn et al.,
2020), with a Cauchy prior with the scale \/LE To compare the BRS ’s

predictions between conditions Wilcoxon rank-sum tests were employed
and to compute the Bayes Factors we again used the procedure proposed
by (van Doorn et al., 2020).

We also conducted within-person forced-choice discrimination,
where two activation maps from the same participant were compared,
and the image with the higher overall signature response (i.e., the
stronger expression of the signature pattern) was classified as associ-
ated with higher reward. If this matched the actual labels the classifi-
cation was labeled as correct and otherwise as incorrect. Subsequently
the average across subjects was computed to determine forced-choice
accuracy. We conducted these forced-choice tests for all combinations
of conditions (i.e., HR vs. NT, NT vs HP & HR vs HP). The advantage of
the forced-choice test is that it is ‘threshold free’ in the sense that an ab-
solute decision threshold across individuals is not required; zero is used
as the threshold for the difference between the two paired alternatives
(Wager et al., 2013). Thus, individual differences in the shape and am-
plitude of the blood oxygen level dependent (BOLD) fMRI response do
not add noise in this kind of test. To test for significance, permutation
tests were used where the order of conditions was permuted (N = 10000)
and the accuracy was computed again. The empirical classification ac-
curacy was then compared to the null distribution of accuracies based
on permuted values to obtain p-values.

2.6.2. Validation on the MID,,

To test how well the BRS generalizes to new data involving mone-
tary outcomes the MID,; was used. Specifically, we tested whether the
BRS generalizes to a MID task with five levels of monetary outcomes
(+5 €, +1 €, 0 €, -1 €, -5 €) from different participants using differ-
ent scanners and scanning parameters. To this end, we obtained pattern
expression values by computing the dot product of the cross-validated
weightmap (averaged across folds) of the reward pattern (created on
the MID,,,;,) and the z-maps and adding the intercept (averaged across
folds) for each subject and condition from the MID,;. For the MID,;
the High Reward (HR-won > HR-lost), Low Reward (LR-won > LR-lost),
Neutral (NT-won > NT-lost), Low Loss (LL-lost > LL-won) and High Loss
(HL-lost > HL-won) contrasts were used. The resulting pattern expres-
sion represents scalar response values, which constitute the predicted
monetary outcome for the given condition. The pattern expression val-
ues were then tested for differences between experimental conditions.
We calculated the Spearman correlation between the pattern expression
values and the actual monetary outcome values for each of the condi-
tions (45 €, +1 €, 0 €, -1 €, -5 €), with higher correlations representing
higher predictive accuracy, in the sense of variance of rewards explained
by the pattern expression values. Specifically, the predicted monetary
outcome values obtained from the dot multiplication (5 conditions *
12 subjects = 60 predicted monetary outcome values) were correlated
with the 60 actual monetary outcomes in a single correlation. To es-
timate significance of the predictive performance, a permutation test
(N = 5000) was performed where the true monetary outcome values
were shuffled and the procedure was repeated. To assess the robustness
of the estimation of significance we also repeated the permutation tests
with the root mean squared error as a predictive performance evalua-
tion metric (N = 5000). To test whether the predictions made by the
BRS in the different conditions were different from zero and whether
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predictions between conditions were significantly different from each
other, the same procedure as detailed above was used. As before, we
conducted within-person forced-choice discrimination to further assess
the predictive accuracy of the BRS. As above, permutation testing was
used to evaluate statistical significance of classification accuracies.

2.6.3. Validation on the HCP Gambling task

To investigate whether our BRS generalizes to a completely different
task involving monetary outcomes, the HCP Gambling task was used.
Specifically, we tested whether the BRS generalizes to the Gambling
with three different levels of monetary outcomes (+1 €, 0 €, -0.5 €)
that were not symmetrically distributed around zero. As before, we ob-
tained pattern expression values by computing the dot product of the
cross-validated weightmap (averaged over folds) of the reward pattern
(created on the MIDy,,;,) and the z-maps and adding the intercept (aver-
aged over folds) for each subject and condition from the HCP Gambling
task and then tested the predictive performance using the Spearman
correlation between actual monetary outcomes and predicted monetary
outcome values (3 conditions * 1084 subjects = 3252 predicted mon-
etary outcome values). As above, permutation tests were used to esti-
mate significance. To test whether the predictions made by the BRS in
the different conditions were different from zero and whether predic-
tions between conditions were significantly different from each other,
the same procedure as detailed above was used. Again, we conducted
within-person forced-choice discrimination, to further assess the pre-
dictive accuracy of the BRS. As above, permutation testing was used to
evaluate statistical significance of classification accuracies. To evaluate
the test-retest reliability of the HCP Gambling task, we also computed
the pattern response to the first and second run separately and then cal-
culated the pearson, spearman and intraclass correlation between the
pattern responses for the two runs. We chose to assess test-retest re-
liability for the HCP specifically because it was the only sample large
enough to get meaningful estimates of test-retest reliability.

2.6.4. Testing the specificity on the DDT task

For specificity, the signature expression should not significantly dif-
fer from zero when applied to z-maps from tasks involving other types
of emotionally salient outcomes. To assess the specificity of our BRS we
employed the DDT task. We explored whether the BRS also predicts dis-
gusting (coded as -1) versus neutral outcomes (coded as 0). In addition,
we also tested whether the BRS would be able to predict positive or
negative feedback in the disgust delay task. This was done to explore
whether the BRS predicts monetary outcomes specifically or generalizes
to rewarding versus loss outcomes more generally. As before, we ob-
tained pattern expression values by computing the dot product of the
cross-validated weight map (averaged over folds) of the reward pattern
(created on the MIDy,,;,) and the z-maps and adding the intercept (aver-
aged over folds) for each subject and condition from the DDT task and
then tested the predictive performance using the Spearman correlation
between actual emotional outcomes (neutral vs disgusting images) and
predicted emotional outcomes (2 conditions * 39 subjects = 78 predicted
emotional outcome values). As above, permutation tests were used to es-
timate significance. To test whether the predictions made by the BRS in
the different conditions were different from zero and whether predic-
tions between conditions were significantly different from each other,
the same procedure as detailed above was used. As above, we conducted
within-person forced-choice discrimination, to further assess the predic-
tive accuracy of the BRS. As above, permutation testing was used to
evaluate statistical significance of classification accuracies.

2.6.5. Testing the specificity and generalizability of the EVT task

To further characterize the specificity and generalizability to other
experimental task structures of our BRS we employed the EVT task. We
investigated whether simply viewing the emotions of others loads onto
the BRS, compared to neutral facial expressions, or whether the BRS
is specific for first person rewards or losses. In addition, we explore
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Table 1

Coding of outcome and salience for feature selection.
Parameter estimate image Outcome Salience
High Reward (HR) 1 1
Neutral (N) 0 0
High Loss (HL) -1 1

whether viewing negatively valenced facial expressions (actors express-
ing anger, disgust, fear, pain, sadness) would load negatively on the BRS,
in analogy to first person losses, or whether they would load positively
on the BRS as has been proposed in studies of morbid curiosity where
the information content of other people’s negative emotions is reward-
ing (Oosterwijk et al., 2020). As before, we obtained pattern expression
values by computing the dot product of the cross-validated weight map
(averaged over folds) of the reward pattern (created on the MID,,,;,)
and the z-maps and adding the intercept (averaged over folds) for each
subject and condition from the EVT task. To test whether the predic-
tions made by the BRS in the different conditions were different from
zero and whether predictions between conditions were significantly dif-
ferent from each other, the same procedure as detailed above was used.
As above, we conducted within-person forced-choice discrimination, to
further assess the predictive accuracy of the BRS. The difference to the
analysis above is that here we computed two-sided p-values since there
were no clear predictions about whether observing negative emotions of
others should load positively or negatively on the BRS compared to the
neutral expressions. As above, permutation testing was used to evaluate
statistical significance of classification accuracies.

3. Results
3.1. Within-task prediction

To create a generalizable BRS we first trained and tested our LAS-
SOPCR model on the MID,,,;, using 5-fold cross validation and a thresh-
old of p < 0.5 (threshold was applied within the cross-validation loop)
for the feature selection procedure. The analysis revealed that outcomes
in the left-out cross-validation folds in the MID,,,;, could be signifi-
cantly predicted by the BRS (RMSE = 2.89, Pperm < 0.001, r = 0.72,
Pperm< 0.001, BF;; > 1000). The feature selection procedure selected
39% of voxels across the whole brain (Fig. 2A). Using the bootstrap pro-
cedure, we observed that particularly voxels in the dorsal striatum and
the ventromedial prefrontal cortex (vmPFC) significantly contributed to
the predictive success of our model (at p < 0.001; Fig. 2B and Table 2; for
other thresholds see Appendix 2). Fig. 3A shows the signature values ob-
tained when multiplying the z-maps of the individual participants with
the thresholded (Ppootstrap < 0-001; see methods) BRS. For the forced
choice analysis we observed significant classification accuracies for all
tests. However, classification accuracy was substantially higher between
rewarding and loss conditions and neutral and loss trials than between
reward and neutral conditions (see Table 3).
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Table 3
Forced choice accuracies (%) for the MID,;,.
HR N HL
HR -
N 67+ -
HL 92+ 95+ -

HR = High Reward, N = Neutral; HL = High Loss;
= Pperm < 0.01; **= Pperm < 0.001.

"= Dperm < 0.05;

3.2. Meta-analytic decoding of the BRS map

To functionally characterize the BRS, the Neurosynth (Yarkoni et al.,
2011) decoder function was used to assess its similarity to the reverse
inference meta-analysis maps generated for the entire set of terms in-
cluded in the Neurosynth dataset. Here the unthresholded z-map ob-
tained through the bootstrap procedure was used, since the neurosynth
decoder works best on unthresholded whole brain maps. The most rel-
evant features were ‘reward’ and ‘monetary’ for the top 50 terms (ex-
cluding anatomical terms) ranked by the correlation strengths between
the BRS map and the meta-analytic maps (see word cloud, size of the
font scaled by correlation strength, Fig. 2C).

3.3. Testing the generalizability on the MID,;

To test the generalizability of the BRS map we tested the predic-
tion performance on the MID,,;. This allowed us to evaluate how well
the BRS is able to predict relative reward magnitude based on activa-
tion patterns in new participants from a different scanner and with a
different number of levels of monetary outcomes. Using the significant
voxels from the BRS map in Fig. 2B we observed a significant predic-
tion of the relative monetary outcomes on the MID,,; (RMSE = 2.97,
r = 0.75, Pperm < 0.001, BF; > 1000; Fig. 3B). To test the robustness of
this finding the prediction was also repeated using all voxels, and the
FDR-corrected map (p<0.05; see Appendix 2), and a map derived from
first selecting the most consistent voxels and correcting using FDR (see
Methods). The robustness checks revealed very similar significant pre-
dictions on the MID,,; (see Appendix 2). For the forced choice analysis
we observed significant classification accuracies for the tests comparing
the reward to the loss condition and the neutral to the loss condition.
No significant classification accuracies were observed when contrasting
rewarding and neutral trials. In addition, no significant classification
accuracy was observed when comparing high and low loss trials (see
Table 4).

3.4. Testing the generalizability on the HCP gambling task

To further test the generalizability of the BRS map we assessed the
prediction performance on the HCP gambling task. This enabled us to
test how well the BRS is able to predict on a much larger set of par-
ticipants, from a different scanner, on a different task using a different
experimental design (block vs event-related) and with different asym-
metric levels of monetary outcomes. Using the significant voxels from

Table 2

Clusters for the significant voxels identified by the bootstrap procedure.
Region peak x peak_y peak z peak _value volume_mm nr_voxels
R Dorsal Striatum 24 14 -2 722.053 3456 432
L Dorsal Striatum -20 12 -8 97.371 3152 394
R Occipital Pole 16 -92 -8 679.417 1464 183
vmPFC 2 44 -4 576.394 1248 156

L = Left; R = Right; vmPFC = ventromedial prefrontal cortex. Only clusters of at least 50
voxels are shown, a complete list can be found in Supplementary Table S2. All voxels were
used in the analysis. The table was generated using the python package Atlasreader(Notter

et al., 2019)
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Fig. 2. A) Mean weights for the out-of sample prediction on the MID,,,;,. B) Voxels significantly contributing to the out-of-sample prediction identified using the
bootstrap procedure (p<0.001). C) Word cloud showing the top 50 relevant terms (excluding anatomical terms) for the meta-analytic decoding of the BRS map. The

size of the font was scaled by correlation strength (r;;, = 0.11, r,,, = 0.22).

the BRS map shown in Fig. 2B, we observed a significant prediction of
the monetary outcomes on the HCP gambling task (RMSE = 0.7,pperm<
0.001, r = 0.21, pperm< 0.001, BF;o > 1000; Fig. 3C). To test the robust-
ness of this finding the prediction was also repeated using all voxels, and
FDR-corrected map (p<0.05) and a map derived from first selecting the
most consistent voxels and correcting using FDR (see Methods). The ro-
bustness checks revealed very similar significant predictions on the HCP
gambling task (see Appendix 2). For the forced choice analysis we ob-
served significant classification accuracies for all tests. However, as for
the MID tasks, the classification accuracy was substantially higher be-
tween rewarding and loss trials and neutral and loss trials than between
reward and neutral trials (see Table 5). The analysis of the test-retest
reliability revealed that there is a significant correlation between the
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patterns responses of the first and the second run of the HCP ("peqrson
= 0.24, Pperm< 0.001; Topoarman = 023, Pperm< 0.001; rice = 0.24, Pporm<
0.001; BF3, > 1000).

3.5. Testing the specificity on the DDT

In order to evaluate the specificity of the BRS map we assessed the
prediction performance on the outcome phase of the DDT, in which par-
ticipants see disgusting or neutral images. This enabled us to investigate
whether the BRS map predicts differences in emotional salience more
generally or whether it more specifically captures differences in reward.
Using the significant voxels from the BRS map (see Fig. 2 middle) we
did not observe a significant prediction of the differences in outcomes
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Fig. 3. A) Violinplot for the predicted monetary outcomes across conditions in the MID,,;, B) Violinplot for the predicted monetary outcomes across conditions
in the MID,,, . C) Violinplot for the predicted monetary outcomes across conditions in the HCP gambling task. Because the HCP data contained 1084 subjects only
30% of actual data points could be plotted. The darker dots at the edges are due to several points overlapping with each other. D) Violinplot for the predicted
disgusting versus neutral outcomes in the DDT for the outcome phase. E) Violinplot for the predicted positive versus negative feedback in the DDT for the feedback
phase. F) Violinplot for the BRS values for the EVT. The gray and green thick horizontal lines show the median of the High Happy and Neutral condition for visual
comparison against the other conditions. Note that not to overload the panel, statistical comparisons are omitted, but are mentioned in the text and in Table 6.
For all panels: In the violin plots the circles represent individual observations arranged so that they do not overlap. Within the box and whisker plots, the white
point represents the median, the box represents the lower and upper quartiles, the whiskers represent the 1.5 interquartile range. DID = Disgust Incentive Delay
Task; MID = Monetary Incentive Delay Task; HCP = Human Connectome Project Gambling Task. *:BF;, > 3; **:BF,, > 10; ***:BF;, > 100; red*:BF;, < 0.33. Note
that we use BF10 values rather than p-values for the stars in the Fig. to provide evidence for the null or alternative hypothesis. For A-E, the stars above the violin
represent the BF obtained from one-sample t-tests against zero, whereas the stars above the bars between violins represent the BFs obtained from Wilcoxon rank-sum
tests comparing predictions. For F, all loadings were significantly different from zero (all BF;,>229, all p<0.001), and comparisons across conditions are detailed in
Table 6, using forced choice statistics.
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Table 4
Forced choice accuracies (%) for the MID,,;.
Column1 HR LR N LL HL
HR -
LR 58 -
N 58 50 -
LL 92+ 92+ 92+ -
HL 92 92** 100** 75

HR = High Reward, LR = Low Reward, N = Neutral; LL = Low Loss;
HL = High Loss; *= Pperm < 0.05; ***= Ppery < 0.001.; ** = ppery < 0.01.

Table 5
Forced choice accuracies (%) for the HCP.

HR N HL
HR -
N 53+ -
HL 73 63+

HR = High Reward, N = Neutral; HL = High Loss;
= Pperm < 0.01; *** = pyy < 0.001.

*= Pperm < 0.05;

in the DDT, and most importantly, found Bayesian evidence for the ab-
sence of such differentiation (RMSE = 0.9, Py, =0.84, = -0.13, pper=
0.28, BF,, =0.23; Fig. 3D). To test the robustness of this finding the
prediction was also repeated using all voxels, and FDR-corrected map
(p<0.05), and a map derived from first selecting the most consistent vox-
els and correcting using FDR (see Methods). The robustness checks did
not reveal any significant prediction on the DDT either (see Appendix
2). For the forced-choice analysis we found that the neutral trials could
not be significantly distinguished from disgusting trials in the outcome
phase (33%, p = 0.98).

To further assess the specificity of the BRS we also tested the feed-
back phase of the DDT (see Fig. 1D), in which participants are informed
whether they successfully performed the task or not. Using the signifi-
cant voxels from the BRS map shown in Fig. 2B, we found a significant
prediction of feedback in the DDT (RMSE = 0.92, Pperm< 0.001,7=10.38,
Pperm< 0.001, BFy4 > 1000; Fig. 3E). To test the robustness of this find-
ing the prediction was also repeated using all voxels, an FDR-corrected
map (p<0.05) and a map derived from first selecting the most consistent
voxels and correcting using FDR (see Methods). The robustness checks
revealed very similar significant predictions on the feedback phase of
the DDT (see Appendix 2). The forced-choice analysis revealed that the
successful trials could be significantly discriminated from unsuccessful
trials in the feedback phase (92%, p < 0.001). Notably, both distribu-
tions in the feedback phase are significantly below zero (see Fig. 3E).
This may be due to the fact that the BRS is developed to maximize rel-
ative predictive performance. As a consequence, the predictive values
for the DDT feedback are all negative because relative to receiving a
monetary reward and succeeding at a given trial, just succeeding at a
given trial is experienced as less rewarding.

To test whether the neural activation elicited by the outcome phase
(when viewing the pictures) may have a bleed-over effect on the mo-
tivational delay period and to assess whether the results presented
above are robust to different modeling choices we ran a robustness
check with average activity as baseline. Results were replicated for
both the outcome and the feedback phase. As before, for the outcome
phase no significant prediction of differences in outcomes were observed
(RMSE = 1.03, Ppen=0.94, T = -0.14, ppormy= 0.22, BF =0.42). For the
feedback phase, we again found a significant prediction of feedback in
the DDT (RMSE = 0.78, Ppery< 0.001, 1 = 0.47, Ppry< 0.001, BF( >
1000).
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3.6. Testing the specificity and generalizability on the EVT

In order to further characterize the BRS, we investigated how the
brain response to watching facial expressions of other people’s emo-
tions would load on the BRS. Visual inspection of Fig. 3F illustrates that
overall, witnessing emotional facial expressions, be they positive, neg-
ative or neutral, leads to positive loading on the BRS (one sample t-
test against zero, all BF;,>229, all p<0.001, t>4.5) with loading higher
for the more intense expressions (two intensity x 6 emotion repeated
ANOVA: main effect intensity: F(1,26)=17.53, p=0.0003, BF;,=6.99).
The forced-choice analysis (Table 6) confirms that against the neutral
stimulus (NT) all high-intensity emotions, be they positive (HH) or nega-
tive (SH, AH, FH, DH) generated significant discrimination performance,
except for Pain (PH>NT in 59% of cases, n.s.); and that for all negative
emotions, except for Pain, the low intensity video led to lower values
on the BRS than the high intensity video. Finally, the High Happy video
did not lead to BRS loading that could be discriminated from that of
High Sadness, High Anger or High Disgust. This positive loading was
expected for the Happy condition and also for the Neutral conditions as
we observed the same result in the MID tasks and in the HCP. However,
positive loading for all negative emotions, and more positive loading
than for the neutral facial expression is perhaps less expected. Research
on a phenomenon called morbid curiosity has however shown that peo-
ple actually choose to view negatively valenced images over neutral im-
ages, and that doing so was associated with activation in reward related
brain regions (Oosterwijk, 2017, Oosterwijk et al., 2020). This prefer-
ence for negatively valenced material is thought to arise from a moti-
vation to approach informative stimuli, with negative material having
a higher information content than neutral material. To test whether our
loading on the BRS may reflect a similar process, we performed two
additional analyses. First, we compared the topology of our BRS with
the activation pattern found by Oosterwijk and colleagues (Appendix
4). This analysis revealed significant similarities (i.e., positive correla-
tion between the two maps: r = 0.25, p < 0.001). Second, we asked
a different set of participants, recruited online, to rate our high inten-
sity videos and our neutral videos on how interesting they found them.
Fig. 4 shows that our happy, angry, disgusted and fearful facial expres-
sions were indeed reported to be more interesting than our neutral facial
expressions (all p< 0.001, all BF;,> 46), which could help explain why
watching them may involve information-approaching-related processes
that are similar-enough to the reward signals that we trained the BRS to
capture. The only incongruence we find is that viewing the sad facial ex-
pressions did load significantly more than the neutral faces on the BRS,
while online participants failed to find the sad facial expressions more
interesting.

3.7. Using Neurosynth masks related to monetary outcomes for feature
selection

To compare our data-driven feature selection approach to a more
theory driven feature selection approach we also used two Neurosynth
maps ((Yarkoni et al., 2011); see Table 8) related to monetary out-
comes for feature selection within the cross-validation loop. Specifi-
cally, we used a meta-analytic map created based on the term mone-
tary reward (Association test, FDR corrected for multiple comparisons
at p<0.01) and on the term outcome (Association test, FDR corrected
for multiple comparisons at p<0.01). A similar pattern of results as for
the data-driven feature selection approach reported in the main text
was found. Again the BRS significantly predicted monetary outcomes
in the MID,; and the HCP gambling task, but did not significantly pre-
dict outcomes in the DDT. Performance on the HCP was slightly higher,
whereas performance on the MID,,; was slightly lower, which was ex-
pected as the data-driven feature selection was trained on another ver-
sion of the MID task, and consequently was more likely to perform
higher on a similar task. In contrast, the theory-driven approach was
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Table 6
Forced choice accuracies (%) for the EVT.
SH AH FH DH PH AL DL SL FL PL NT HL HH

SH - 41 44 59 63 44 70%* 67* 59 59 81" 64 44
AH 59 - 44 70** 74 70** 85** 67* 74** 74** 85*+* 63 59
FH 56 56 - 74 78 70" 89** 74 78%** 78%* 93** 74 67*
DH 41 30** 26%** - 59 37 67 56 56 56 74 48 37
PH 37 26" 227 41 - 52 59 44 52 44 59 48 30™*
AL 56 30%** 30%** 63 48 - 63 67* 63 70%** 67* 63 41
DL 30" 15%* 110 33* 41 37 - 44 44 48 59 52 33*
SL 33* 33* 26%* 44 56 33" 56 - 41 48 59 41 41
FL 41 26*** 224 44 48 37 56 59 - 56 56 48 37
PL 41 26%** 224 44 56 30%* 52 52 44 - 52 37 48
NT 19 15"  7%% 26" 41 33 41 a4 48 - 30 26m
HL 37 37 26*** 52 52 37 48 59 52 63 70%* - 44
HH 56 41 33* 63 70%* 59 67* 59 63 52 74 56 -

Numbers indicate the proportion of subjects in which the condition mentioned over the row is numerically larger
than the one indicated in the column. The p values were assessed using a label permutation statistics. SH = Sad
High, AH = Anger High, FH = Fear High, DH = Disgust High, PH = Pain High, AL = Anger low, DL = Disgust Low,
SL = Sad Low, FL = Fear Low, PL = Pain Low, NT = Neutral; HL = Happy Low, HH Happy High; * = p,¢m, < 0.05;

= Pperm < 0.01; = = Pperm < 0.001.

N=200 , W=18125, p<0.001
BF ,=5.958x10%

Fig. 4. Violinplot for the ratings across positive, neutral and neg-
ative emotions in the emotion rating task. Circles represent indi-
vidual observations arranged so that they do not overlap. The box
plot includes a white point for the median, a box for the quartiles,
and whiskers for the max and min. Since the data was collected
in five batches of participants (each containing videos of one neg-
ative emotion while always containing the same Happy and Neu-
tral videos) we pooled the observations for Happy and Neutral
videos for visualization purposes only in the leftmost violins. As
a consequence, there are less observations for the negative emo-
tions than for the Happy and Neutral videos. A Bayesian repeated
ANOVA with Happy and Neutral video ratings as within factor,
and batch as between, showed that the difference between Happy
and Neutral did not change across batches (BF;,, main effect of
video = 5.66 x 10'3, BF,,, main effect of batch = 0.278; BF,,, in-
teraction = 0.209). Green and gray horizontal lines represent the
median value of the happy and neutral facial expressions for that
pool of participants, respectively. The black dots on the happy vi-
olin represent outliers, values above Q3 + 1.5 * IQR or below Q1 -
1.5 * IQR. For the negative emotions, stars over the green or gray
lines represent the significance of a paired comparison of the rat-
ing for the negative emotion against those for the happy or neutral
facial expressions, as detailed in Table 7.
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more task independent and more likely to perform similarly well across
tasks.

4. Discussion

In the current study, we developed a multivariate brain model, the
BRS, to allow us to decode the relative degree of reward across condi-
tions in active decisions tasks. In particular, using the correlation be-
tween actual and decoded reward in the MID and HPC gambling task,
we show the ability of the BRS to explain a significant proportion of the
variance in the reward magnitude involved. This BRS is not only able to
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predict variance in the monetary outcome in unseen subjects from the
same sample but also generalizes to different samples using a different
version of the same task and also to entirely different tasks. Further, this
signature was found to not only predict monetary outcomes, but also re-
warding outcomes in the form of positive versus negative feedback more
generally. Relatedly, the BRS was found to load positively on prediction
errors for money and for avoiding painful stimuli to others (a negative
reinforcer) in a study currently under review elsewhere (but see Reply
to Reviewer) investigating learning under moral conflict (Fornari et al.,
2022). Importantly, the BRS values were appropriately signed, with wit-
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Table 7
Comparison of interest ratings across conditions.
Anger Disgust Fear Pain Sad
Vs tag) = 3.724 t(a0) = 3.811 t(39) = 7.209 ts) = 2.186 ts0) = 0.190
Neutral p = 6.192e-04 p = 4.168e-05 p=1.11e-08 p =0.035 p = 0.850
BF,, = 46.843 BF,, = 58.945 BF,, = 1.165e+6 BF,, = 1.433 BF,, = 0.173
Vs tag) = -4.111 W=645 ts9) = -3.46 t39) = -5.304 t0) = -7.302
Happy p = 1.96e-04 p =1.522e-03 p =1.323e-03 p = 4.772e-06 p =8.28e-09
BF,, = 131.922 BF,, = 890.132 BF;, = 23.811 BF,, = 3982.874 BF,, = 1.536e+6

Table 8
Neurosynth maps for monetary reward and outcome.

Network Studies  Date of Link to download
Monetary Reward 97 04.10.2021 https://neurosynth.org/analyses/terms/monetary%20reward/
Outcome 385 04.10.2021 https://neurosynth.org/analyses/terms/outcome/

nessing shocks loading negatively on the BRS and receiving money, pos-
itively, which further speaks to the generalizability of its sensitivity to
reinforcers as outcomes in decision-making tasks. With regards to such
outcomes, this BRS was found to be specific to rewarding outcomes and
did not generalize to emotionally salient (disgusting) images (when are
the result of a decision). However, when passively viewing facial ex-
pressions of other individuals, rather than outcomes arising from the
participant’s own actions, viewing all facial expressions yielded posi-
tive BRS values, with almost all of them being larger than the neutral
facial expressions. This suggests that the BRS, when used in context in
which participants do not need to make choices, may capture a wider set
of processes that future experiments will need to further characterize.

To create the BRS that is sensitive to the neurocognitive underpin-
nings of reward processing, we trained a LASSOPCR model on the MID,
which is the most consistently used task to evoke the neural mechanisms
associated with processing monetary outcomes (Oldham et al., 2018).
To ensure that the BRS predicts reward specifically and not salience in
general, we only selected voxels for predictions that correlated more
strongly with outcomes (i.e., voxels that differentiate between reward,
neutral and loss outcomes), than with salience (i.e., voxels that differ-
entiate only between neutral and consequential, reward or loss, out-
comes). We found that clusters of voxels in the bilateral dorsal striatum,
the vimPFC and the right occipital pole significantly decoded monetary
outcomes in novel participants from the same sample. We subsequently
tested whether the observed clusters indeed reflect reward processing
areas by means of using the Neurosynth (Yarkoni et al., 2011) decoder.
This decoder compared our BRS to the entire set of terms included in
the Neurosynth database and found that the highest ranked associations
were reward and monetary, providing converging evidence that the BRS
predicts rewarding outcomes.

The finding that activation patterns in the dorsal striatum are predic-
tive of rewarding outcomes aligns well with previous fMRI studies that
found that the striatum encodes prediction error signals ((Diekhof et al.,
2012, Galtress et al., 2012, Haber and Knutson, 2010, O’Doherty et al.,
2004). The striatum has been consistently linked to both the anticipa-
tion and evaluation of rewarding outcomes (Oldham et al., 2018). In
addition, abnormal activity in the striatum and connectivity between
the striatum and the limbic system have been linked to impaired re-
ward processing in obesity and bipolar disorder (Caseras et al., 2013,
Nummenmaa et al., 2012, Yip et al., 2015). Similarly, the observation
that a cluster of voxels in the vmPFC is predictive of rewarding out-
comes is in accordance with previous fMRI research on economic deci-
sions and reward processing, as it has been associated consistently with
the receipt of reward or loss and the computation of subjective value
(Bartra et al., 2013, Diekhof et al., 2012, Haber and Knutson, 2010,
Kringelbach, 2004, Levy and Glimcher, 2012, Peters and Biichel, 2010,
Sescousse et al., 2013). It is relevant to note that while we found reward
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to be positively associated in our BRS, this does not preclude the exis-
tence of circuits and ensembles that encode loss and aversive processes
and conversely exhibit decreased activation in response to reward.

As a next step, we tested the generalizability of the BRS on two dif-
ferent samples. Firstly, we tested the relative predictive accuracy of the
BRS on a different version of the MID, with five levels of monetary out-
comes instead of three, from a different sample and found that we could
again decode monetary outcomes significantly with high accuracy, as
assessed using the correlation between decoded and actual reward mag-
nitude. Secondly, we assessed the predictive performance of the BRS on
a large sample (N = 1084) with a different task, namely a gambling task
from the Human Connectome Project. Again, we found that the BRS was
able to significantly predict monetary outcomes. Together, these results
highlight the generalizability of the predictions of the BRS. The obser-
vation that predictive accuracy dropped in comparison to the other two
samples can be explained by the fact that this task differed from the
MID task in two ways: In contrast to the MID, the gambling included
rewards that were not symmetrically distributed around zero. In addi-
tion, the gambling task was developed for analysis using a block design
(averaging over several trials of the same condition) whereas the MID
used an event related design (modeling specific phases within a trial
individually).

While our feature selection procedure, which removed voxels that
primarily responded to salience, and training the BRS on a well-
established reward processing task provided a good fundament for en-
suring the specificity of predictions, we also wanted to empirically test
this specificity. To this end, we also evaluated the predictions of the BRS
on two phases of the DDT, a novel task designed to evoke disgust as a
negative outcome. First, we tested the outcome phase to test whether
predictions are specific to reward or generalize to other emotionally
salient outcomes such as disgust. The analysis provided evidence in fa-
vor of the absence of an effect. Stated differently, the BRS generated
predictions that did not differ between participants viewing a disgust-
ing image or a neutral image. Second, we tested predictions during the
feedback phase which provided a success/failure feedback to the partic-
ipants, and could therefore be triggering neurocognitive processes as-
sociated with reward/loss that are non-monetary in nature. Here we
found a significant predictive performance of the BRS, suggesting that
the BRS decodes reward and loss processing more generally and is not
limited to monetary outcomes alone. This was also confirmed by the
signed loading of prediction errors for shocks on the BRS in the moral
conflict task, where less intense shock than expected, a negative rein-
forcer, led to positive loading on the BRS. These two findings suggest
that the BRS predicts reinforcing outcomes, be they positive (financial
or otherwise) or negative reinforcers (withholding a shock) with some
specificity that does not generalize to the other emotionally salient out-
come (disgust in the DDT). Importantly, this specificity for reinforcers
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holds in the context of tasks in which the outcome is the result of a
participant’s decision.

To perform a first step along a necessarily long route to charac-
terize the BRS in task structures that differ fundamentally from those
in which it was trained, by identifying the boundaries of the stimuli
that may load onto it, we used the EVT, in which participants witness
the anger, disgust, fear, happiness, pain and sadness of others. Impor-
tantly, in the EVT, the stimuli were not a reward or punishment con-
tingent on the participant’s actions, acting as reinforcers, but stimuli
presented in random sequence independently of the participants perfor-
mance. Based on the literature on empathy, we might have expected that
viewing positively valenced facial expressions (happy) may have trig-
gered positively valenced feelings in the viewer and hence positive BRS
values. This prediction was confirmed. Empathy may however also pre-
dict that viewing negatively valenced facial expressions (angry, fearful,
disgusted, sad, painful) may have triggered negatively valenced feelings
and hence negative BRS values. This prediction was not confirmed, as
viewing most of the negatively valenced facial expressions yielded pos-
itive BRS values. In contrast, the literature on morbid curiosity predicts
that participants are motivated to approach information independently
of its valence. (Bennett et al., 2016) found that humans intrinsically
value information in a way that is inconsistent with normative accounts
of decision-making under uncertainty and are willing to incur consid-
erable monetary costs to obtain information even if it is irrelevant to
the task at hand. Oosterwijk and colleagues (Oosterwijk, 2017) have
shown that participants actively approach negatively valenced material
rather than neutral materials, with participants specifically choosing to
approach social negative information over nonsocial negative informa-
tion and Kashdan and Silva (Kashdan and Silvia, 2009) have found that
there are significant long term benefits to be reaped from being curi-
ous about the emotions of others. Given this established motivation to
approach even negatively valenced informative social stimuli, and that
our negative emotional facial expressions were rated as interesting, that
viewing all but the painful facial expression yielded positive loadings
on the BRS may thus capture the satisfaction of this information-seeking
motivation - a signal similar enough to reward-signals to be captured by
a signature trained to capture reward vs. loss processing. Neuroimag-
ing evidence supporting the neural similarity of morbid curiosity and
reward-signals stems from a recent fMRI study that showed that choos-
ing negative stimuli is associated with the activation of reward related
structures (Oosterwijk et al., 2020, Scrivner, 2021). (Oosterwijk et al.,
2020)) used the same Neurosynth decoder approach that we employed
and found that the top 3 terms associated with their activation when par-
ticipants choose to view negatively valenced materials, were ‘reward’,
‘task’ and ‘monetary’, which is almost identical with our results. To fur-
ther explore that similarity, we correlated our BRS with Oosterwijk and
colleagues’ whole brain map for morbid curiosity and found a significant
positive correlation, further supporting a significant similarity between
the neural processes related to reward processing and morbid curios-
ity (see Appendix 4). In the light of these considerations, our initially
counterintuitive finding that the BRS yields positive values for viewing
positive and negative facial expressions, is perhaps less surprising. The
information content of these stimuli may have satisfied a motivation to
seek social information, triggering a signal reinforcing the processing
and approach of these stimuli that resemble that involved in reward
and loss sufficiently, to be captured by our signature trained to quan-
tify the latter. Indeed, the box office successes of movies that showcase
strong negative emotions in its protagonists are perhaps a token to the
reinforcing value of even negative facial expressions.

Negative and positive facial expressions are also more visually salient
than the neutral ones, inviting us to consider the possibility that the BRS
may simply capture such salience. That both high gain and high losses
are salient in the MID tasks, but load in opposite directions onto the
BRS speaks against such an unsigned salience signal. Accordingly, our
data suggests a more nuanced working hypothesis that the BRS cap-
tures a signed reward vs. punishment signal when participants receive
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reinforcers contingent on their actions (be they financial or otherwise)
and information seeking signals when they are exposed to stimuli that
are not contingent on their actions. As mentioned in the introduction,
characterizing the specificity of a neural signature is an ongoing process
that will continue to develop as a signature is applied to a wider array
of paradigms, and testing the working hypothesis of a signal that may
reinforce the exploration of informative stimuli will require further stud-
ies that contrast stimuli that participants will voluntarily approach for
their information content from those they will voluntarily avoid, with
the prediction that the former should produce positive and the latter
negative BRS loadings.

Since previous research suggested that reward may be encoded
specifically in the striatum ((Haber and Knutson, 2010, Knutson et al.,
2001), 2005), we also tested whether a broader circuit (i.e. including the
VvMPFC) is needed to decode reward. To this end we applied a more the-
ory driven approach where we used a meta-analytic map created based
on the term monetary reward and on the term outcome. These maps only
included voxels in the striatum (and not in the vMPFC). Similar to the
data-driven feature selection approach reported in the main text, the
BRS significantly predicted monetary outcomes in the MID,, and the
HCP gambling task, and DDT feedback phase, but did not significantly
predict outcomes in the DDT outcome phase. Performance on the HCP
and DDT feedback phase was higher for this theory driven approach
as compared to the data driven BRS. In contrast, performance on the
MID,,; was slightly lower for the theory driven approach, which was
expected as the data-driven BRS involved feature selection trained on
a version of the MID task similar in nature and consequently was more
likely to perform higher on a similar task. In contrast, the theory-driven
approach was more task independent and more likely to perform simi-
larly well across tasks. This aligns well with the notion that the striatum
may encode reward and losses quite generally within the decision mak-
ing framework.

To test the robustness of our findings, we also repeated the reported
analyses in the main text, using different thresholds for the feature se-
lection procedure and for the correction for multiple comparison (see
Appendix 2). These robustness checks validated the findings from the
main text. For all feature selection and multiple comparison correction
thresholds, the predictions within the MIDy;;,, MID,, gambling task
and feedback phase of the DDT remained significant. Only on the DDT
outcome phase (testing for specificity for reward processing), when us-
ing all voxels instead of selecting only voxels that were significant in
predicting monetary outcomes on the MID,,,;,, there was not enough
evidence to support the hypothesis that the BRS was unable to differen-
tiate between disgusting and neutral images. This may be due to voxels
contributing to the prediction that are not specific to predicting mone-
tary outcome but also encode emotional salience in general. Since we
used a lenient threshold for the feature selection algorithm some vox-
els coding for salience may have been included in the model and thus
lowered the evidence in favor of the absence of an effect. This finding
suggests that users should use the signature only including significant
voxels when applying the BRS to other sets.

In future studies, this BRS could be employed to differentiate and
compare the contribution of various emotions and cognitive processes
to complex (social) decisions. For instance, we applied it to the case
of moral decisions, and found that outcomes for others may enter de-
cision making by mapping onto the BRS that was developed to cap-
ture first-person reinforcers (Fornari et al., under revision). The BRS
could be applied in combination with neural signatures for vicarious
pain ((Caspar et al., 2020, Krishnan et al., 2016, Zhou et al., 2020)
(Caspar et al., 2020) and for guilt (Yu et al., 2020) to capture the con-
tribution of first-person reward circuitry in social decision-making.

A limitation of our signature to consider when interpreting appli-
cations of our BRS, is that while its expression values correlate with
the reward outcome obtained by participants in the MID and gambling
task, the BRS failed to identify neutral outcomes as such. Specifically,
in the MID tasks (MID.;, and MID,,), while we correctly find the
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Fig. 5. A: Prediction weights derived from the feature-selection approach based on the monetary reward meta-analytic map. B: Prediction weights derived from the

feature-selection approach based on the outcome meta-analytic map.

gain conditions to generate values significantly above zero, and the loss
conditions to generate negative values, the neutral conditions generate
values that are also slightly positive (Fig. 3A,B). In addition, the BRS
failed to discriminate high and low reward conditions in the MID,,; and
also did not differentiate the two rewarding conditions from the neu-
tral condition accurately. Conceptually, this may be explained by the
observation that people generally seem to be loss averse (i.e., losses
loom larger than gains; (Kahneman, 2011)). Thus, a loss of the same
(monetary) value as a reward will be experienced as more severe and
may thus be encoded as more distant from zero (the neutral condition)
than a reward of an equal amount. This would explain why our algo-
rithm was not always able to significantly discriminate rewarding from
neutral trials, but always achieved significant discrimination between
neutral and loss trials. Methodologically, this observation may be ex-
plained by the fact that when training a linear model on a dependent
variable with only three levels the model will be mostly influenced by
its extreme points, whereas the middle point will be less influential in
determining parameter estimates. Further, our feature selection algo-
rithm was designed to maximize relative prediction performance rather
than absolute prediction, because value based computations and asso-
ciated outcome processing have been found to be context dependent
(Bateson et al., 2003, Huber et al., 1982, Louie et al., 2013, Shafir et al.,
2002, Simonson, 1989) and that decisions do not reflect absolute valu-
ations assigned to individual alternatives. This however means that our
signature should not be applied to the z-values of a single condition to
determine if any reward processing was triggered, but rather on multiple
conditions to test whether they differ in reward processing.

Another limitation pertains to the fact that several constructs related
to reward processing have been associated with the striatum and vMPFC
contained in our BRS, such as the outcome value, anticipated outcome,
goal value and prediction error (Diekhof et al., 2012, Galtress et al.,
2012, Haber and Knutson, 2010, Knutson et al., 2005, O’Doherty et al.,

16

2004, Rutledge et al., 2010) and we can’t precisely disentangle which of
these processes are captured by our signature. The positive loading of all
our facial expressions on the BRS further illustrates this point, negative
facial expressions may not be intuitively considered to be rewarding,
even if an emerging literature shows that people decide to approach and
explore them. This invites us to refine our understanding of the function
of these networks. Our understanding of the relationship between brain
and cognition may benefit by engaging in such iterative multivariate
cycles in which one can attempt to tease apart the neural signatures of
cognitive constructs that we assume to be distinct, and vice versa, chal-
lenge our understanding of the nature of these constructs by exploring
what activates the signatures that are meant to isolate them.

In summary, we created a BRS to predict monetary outcomes across
decision tasks and several large samples. Within an experimental frame-
work in which outcomes are contingent on our participants’ actions,
the BRS appears to perform that aim well: it is specific to rewarding
outcomes (in the sense of positive and negative reinforcers) and does
not seem to generalize to disgusting outcomes. However, it is impor-
tant to be aware that outside of this action-outcome framework, such
specificity for rewards is not supported. That passively viewing facial
expressions, including many of negative valence, yields to positive BRS
values indicates that it may also capture less explored signals reinforcing
the exploration of informative stimuli that may satisfy morbid curiosity.
These curiosity-related signals may share enough neural substrates with
reward processing to be captured by our BRS that was trained to capture
these latter reward processes (Oosterwijk et al., 2020).

The benefit of brain signature over the univariate approach is that it
integrates distributed information from regions across the whole brain
into a single optimized prediction which can then be tested across con-
ditions on new and independent individuals and samples. As a conse-
quence, this approach often circumvents the need for multiple com-
parisons and provides unbiased estimates of effect size (Reddan et al.,
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Table 9
Prediction performance for feature selection based on neurosynth maps.
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Analysis type Monetary reward association

Outcome association

MID,;, CV 0.63 (0.7 %,

HCP Gambling

Peorr

DDT -0.09 (Peorr= N.S., RMSE = 2.39, ppygp < N.S., BF5 =0.23)
DDT Feedback 0.47 (Pore< 0.001, RMSE = 6.08, pyse < 0.001, BF > 1000)
MID,, 0.71 ((Peory< 0.001, RMSE = 2.85, pryse < 0.001, BF;, >1000)

< 0.001, RMSE = 3.23, pgysz < 0.001, BF; >1000)
0.26 (Peory< 0.001, RMSE = 2.01, pgysi < 0.001, BF; >1000)

0.68 (0.4 %; Peorr< 0.001, RMSE = 2.97, ppysg < 0.001, BF;, >1000)
0.3 (Peorr< 0.001, RMSE = 2.67, pryge < 0.001, BF,, >1000)

-0.02 (peore= n.S., RMSE = 2.51, pgpysp < n.S., BFj =0.15)

0.49 (Peorr< 0.001, RMSE = 6.17, pryse < 0.001, BF > 1000)

0.69 ((Peorr< 0.001, RMSE = 2.89, ppys < 0.001, BF;, >1000)

CV = cross-validation; BF;,= Bayes Factor for evidence in favor of the alternative hypothesis; HCP = HCP gambling task; Percentage in the first row represents the

number of voxels selected via feature selection for the different thresholds.

2017), making the signature approach more sensitive, generalizable
and reproducible than traditional univariate approaches (Kragel et al.,
2018).0n the other hand, our results highlight that applying signatures
outside of the bounds of the paradigms they have been trained on, en-
tails the risk of ignoring the fact that the brain can utilize particular
networks for rather different functions across different situations.
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