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a b s t r a c t 

The processing of reinforcers and punishers is crucial to adapt to an ever changing environment and its dysreg- 

ulation is prevalent in mental health and substance use disorders. While many human brain measures related to 

reward have been based on activity in individual brain regions, recent studies indicate that many affective and 

motivational processes are encoded in distributed systems that span multiple regions. Consequently, decoding 

these processes using individual regions yields small effect sizes and limited reliability, whereas predictive models 

based on distributed patterns yield larger effect sizes and excellent reliability. To create such a predictive model 

for the processes of rewards and losses, termed the Brain Reward Signature (BRS), we trained a model to predict 

the signed magnitude of monetary rewards on the Monetary Incentive Delay task (MID; N = 39) and achieved 

a highly significant decoding performance (92% for decoding rewards versus losses). We subsequently demon- 

strate the generalizability of our signature on another version of the MID in a different sample (92% decoding 

accuracy; N = 12) and on a gambling task from a large sample (73% decoding accuracy, N = 1084). We further 

provided preliminary data to characterize the specificity of the signature by illustrating that the signature map 

generates estimates that significantly differ between rewarding and negative feedback (92% decoding accuracy) 

but do not differ for conditions that differ in disgust rather than reward in a novel Disgust-Delay Task (N = 39). 

Finally, we show that passively viewing positive and negatively valenced facial expressions loads positively on 

our signature, in line with previous studies on morbid curiosity. We thus created a BRS that can accurately predict 

brain responses to rewards and losses in active decision making tasks, and that possibly relates to information 

seeking in passive observational tasks. 
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. Introduction 

The processing of reinforcers, such as rewards, and punishers, such

s financial losses, is central to guiding our actions towards positively

alenced outcomes and away from negatively valenced ones ( Lutz and

idmer, 2014 ). Numerous functional Magnetic Resonance Imaging

fMRI) studies have investigated the neural correlates of reward pro-

essing and several meta-analyses have synthesized the findings of these

tudies ( Bartra et al., 2013 , Clithero and Rangel, 2014 , Diekhof et al.,

012 , Liu et al., 2011 ). They generally converge on two main insights:

irst, receiving a reward, or a loss, evokes activity in the nucleus ac-

umbens and surrounding ventral striatum that is hypothesized to rep-

esent a positive, or negative, prediction error signal, respectively, de-

ned as the difference between the actual outcome and the one that

as expected (( Diekhof et al., 2012 , Galtress et al., 2012 , Haber and
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nutson, 2010 ) ( O’Doherty et al., 2004 )). This signal is essential for

earning as it increases the likelihood of behavior leading to better than

xpected outcomes (( McClure et al., 2004 , Schultz and Dickinson, 2000 )

 Yacubian, 2006 )) and reduces that of behavior leading to worse than

xpected outcomes. Second, obtaining secondary reinforcers such as

oney (but also primary reinforcers such as as food & nonfood con-

umables etc. see ( Chib et al., 2009 )), recruits the ventro-medial pre-

rontal cortex (vmPFC) ( Kringelbach, 2004 , Sescousse et al., 2013 ), the

ctivity of which is thought to represent the subjective value of a re-

eived good ( Bartra et al., 2013 , Diekhof et al., 2012 , Haber and Knut-

on, 2010 , Levy and Glimcher, 2012 , Peters and Büchel, 2010 ) and is

lso involved in integrating goal information and conceptual informa-

ion into this value signal ( Hare et al., 2008 , Plassmann et al., 2007 ).

sing MVPA, ( McNamee et al., 2013 ) found that spatially distributed

atterns in the dorsal part of the vmPFC encodes goal-value informa-
ruary 2023 
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ion that is independent of stimulus category, whereas the more ventral

art of the vmPFC encodes unique category dependent value signals in

patially distinct areas. 

Most of these studies have so far used an univariate approach that

ims at identifying the locations in the brain recruited while partici-

ants process rewards. In some cases, however, the aim is not to map a

ircuit involved in reward, but to perform reverse inference by asking

hether reward processing is involved in a given task X, based on the

attern of brain activity measured at a particular moment in that task

 Poldrack, 2006 ). It has been shown that finding activity in a particular

egion of the brain is a poor indicator of the recruitment of a particular

ental process, because most locations are recruited while engaging a

umber of mental processes ( Poldrack, 2006 , Wager et al., 2016 ). In con-

rast, a pattern of activity across many voxels or scalp electrodes, that

an include reductions and increases of BOLD and EEG signal, has been

hown to be associated with a particular mental process with higher sen-

itivity and specificity, and therefore to provide scientists with a help-

ul tool to evaluate how strongly a specific mental process is recruited

n a given task ( Värbu et al., 2022 , Wager et al., 2013 , Yarkoni et al.,

011 ). The ability to decode the degree to which someone is receiving

 reward or a loss has yet to be developed. The advantages of such a

ultivariate brain model are that it leads to larger effect sizes in brain-

utcome association compared to more traditional local region-based

pproaches; makes quantitative predictions about outcomes that can be

mpirically falsified and can be tested and validated across studies and

abs, which promotes reproducibility (for a review on brain signatures

ee ( Kragel et al., 2018 )). 

Here we therefore aim to develop such a multivariate brain model

or reward processing - the brain reward signature ( BRS ) - that would

se distributed BOLD-based information within and across brain re-

ions to make population-level, between-subject predictions about the

trength of engagement of reinforcement/punishment processing. These

redictions should ideally generalize accurately across contexts, and be

ble to distinguish reinforcement or punishment processing from other

ategories of related mental processes, such as (emotional) salience

 Kragel et al., 2018 ). So far, few signatures for reward-related pro-

esses are available ( Grosenick et al., 2013 ) and to our knowledge none

f these have been validated on independent samples. A recent large

cale challenge to predict Autism Spectrum Disorder diagnoses from

MRI ( > 146 team & fMRI from > 2000 individuals) highlighted the im-

ortance of validating predictive models in independent datasets be-

ause model development on a given dataset faces the risk of overfit-

ing. Specifically, techniques such as cross-validation to measure predic-

ive performance are not completely robust to systematic exploration of

nalytic choices, because the models may overfit on noise that is spe-

ific to the data set the models are trained on. Consequently, our study

hus further contributes by validating the BRS in three independent

amples. 

In this study we use a predictive modeling approach ( Kragel et al.,

018 ) that has been successfully employed to explore the neural repre-

entation of various affective processes, including the degree of phys-

cal pain ( Wager et al., 2013 ), vicarious pain ( Krishnan et al., 2016 ),

ocial rejection ( Woo et al., 2014 ), unpleasant pictures ( Chang et al.,

015 ), basic emotions (( Kragel et al., 2016 , Kragel and LaBar, 2015 ,

indquist and Barrett, 2012 , Wager et al., 2015 ), empathy ( Ashar et al.,

017 ), guilt ( Yu et al., 2020 ), and also faces and object categories

 Haxby et al., 2001 ), intentions ( Haynes et al., 2007 , Soon et al., 2013 ),

emantics ( Huth et al., 2012 , Huth et al., 2016 ) and clinical conditions

 Arbabshirani et al., 2017 , Woo et al., 2017 ). Our primary goal is to cre-

te a signed relative BRS . Specifically, the objective is to create a signa-

ure that generates more positive values for conditions associated with

igher rewards, and more negative values for conditions associated with

igher losses. Additionally, the signature should be specific: it should

ot generate high pattern responses in datasets in which reinforcement

r punishment processing should be absent, but other positive or neg-

tive emotions were evoked, such as disgust or guilt. Third, it should
2 
eneralize across studies, samples and contexts where the same neu-

ocognitive processes are engaged (i.e., be generalizable). 

Based on our aim to generate a signed relative signature, we trained

nd tested a LASSO-PCR model (least absolute shrinkage and selec-

ion operator-regularized principal components regression; Wager et al.,

011, 2013) to predict the signed magnitude of reward received in the

onetary-Incentive-Delay task (MID, N = 39; see Methods) to estab-

ish the BRS and test its performance as quantified based on the cor-

elation coefficient between the actual reward value and the pattern

esponse from the neural signature. The pattern response is defined as

he dot product between the BRS and the parameter estimates from a

iven condition and task plus the intercept. The MID was used because

t is the most consistently used task to investigate the neural correlates

f reward processing in humans (more than 200 MRI studies until now

 Oldham et al., 2018 ) and has been designed on the basis of findings

hat reward anticipation engages dopaminergic neurons in the ventral

egmental area (VTA; ( Knutson et al., 2000 )). One strength of the MID

s that it allows modeling a simple decision, which reduces the cogni-

ive confounds that are associated with more complex decision making

 Balodis and Potenza, 2015 , Knutson and Greer, 2008 , Lutz and Wid-

er, 2014 ), reliably. Further, the MID robustly engages the striatum,

hich is crucial in reward and reinforcer processing ( Haber and Knut-

on, 2010 ). To further probe the performance but also the generalizabil-

ty, we then applied the BRS to a different version of the MID (with 5 in-

tead of three levels of reward; N = 12) from different participants using

ifferent scanners and scanning protocols ( Srirangarajan et al., 2021 ).

esides that, we also tested the BRS in a completely different task with

onetary outcomes using a block design instead of an event-related de-

ign on a large sample (1084 subjects) to thoroughly evaluate the gen-

ralizability of the predictions from our signature map. In addition, to

xamine the specificity of the BRS, we employed the novel Disgust-Delay

ask (DDT, N = 39; Fig. 1 D), which evokes neural patterns associated

ith disgust. In this task, we aimed at exploring whether the signature

s specific to monetary rewards and losses or rewarding outcomes more

enerally (i.e. positive versus negative feedback) and whether it is spe-

ific to reward or generalizes to emotional salience (i.e. disgusting ver-

us neutral outcomes). The DDT was chosen because it is similar in task

tructure and solely differs in the neurocognitive processes it is designed

o elicit. To test specificity across a wider range of emotions and gen-

ralizability to different experimental paradigms, we evaluated the pre-

ictions of the BRS on the Emotion Viewing task, in which participants

assively view actors expressing positive (happiness), neutral and neg-

tive (anger, disgust, fear, pain, sadness) emotions. Collectively, data

rom 5 different fMRI tasks and four independent samples (N = 1169)

ere used to train and test the BRS. It is important to note that testing

pecificity is an open ended process, as numerous different conditions

nrelated to outcome processing can be tested, but this is a preliminary

alidation. 

As we are interested in investigating the neural underpinnings of

he reinforcement vs punishment processing more generally and not the

eural correlates of how much exactly someone earns on the MID, our

erformance assessment focuses on the signature’s relative performance,

.e., whether the signature can predict differences in rewards across con-

itions. This is because it has been consistently shown across species that

alue-based choice behavior is context dependent ( Bateson et al., 2003 ,

uber et al., 1982 , Shafir et al., 2002 ) ( Bateson et al., 2003 ). Specifi-

ally, it has been found that how a chooser decides between any two

ptions depends on the number or quality of other options in multi-

imensional attribute space (( Huber et al., 1982 ); Louie et al., 2013).

his context-dependence of value based decisions is hypothesized to be

mplemented on the neural level by means of divisive normalization

 Louie et al., 2011 , Louie et al., 2013 , Louie et al., 2014 ), where the

esponse of a given neuron is divided by the summed activity of a larger

euronal pool ( Carandini and Heeger, 2012 ) . This divisive normaliza-

ion thus produces context dependence, where the value of an option is

xplicitly contingent on the value of the other available options, which
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Fig. 1. A) Example trial of the MIDtrain task: Each trial started with a cue informing participants about the money that can be obtained or lost. Subsequently, 

participants were presented with a fixation cross for a variable amount of time (2-3 s) and the target in the form of a white square appeared for a variable amount 

of time. Afterwards, participants were informed whether they hit or missed and the associated monetary outcome was presented. Lastly, another fixation cross was 

presented for a variable amount of time (3-5 s). B) Example trial of the MIDval task. The differences to the MIDtrain consisted of differences in timing and number 

of conditions. C) Example trial of the Gambling task from the HCP: Each trial began with the presentation of the mystery card represented by the question mark and 

as soon as the participants responded, a fixation cross was presented. Next, participants received feedback about the outcome for 1 s. Lastly, another fixation cross 

was presented for 1 s. D) Example trial of the DDT: Each trial began with the presentation of a fixation cross (2-3 s) followed by a target which was presented for a 

duration that adapted to the participants’ performance. Next, participants received feedback (2-3 s), viewed another fixation cross (2-3 s) and were then presented 

with a disgusting or neutral image contingent on their performance. The trials were separated by a fixation cross (3-5 s). E) Example trial of the EVT: Each trial began 

with the presentation of a fixation cross for a jittered period between 3-10s. Next, participants viewed a video of an actor (four different actors in total) expressing 

one of 6 emotions (anger, disgust, fear, happiness, pain, sadness) at two different intensities (high and low) or a neutral demeanor for 1s. F) Example trial of the 

Emotion Rating Task, in which participants had to rate how interesting they found the presented video on a scale from 1 to 10. Only the neutral demeanor and 

the high intensity emotions from the Emotion Viewing task were used. Participants did not have time constraints to give the response (median reaction time = 3.7s 

[Q1 = 2.9s Q3 = 5.0s], and the next trial started immediately after the response was given. 
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llows efficient coding of information in changing environments. There-

ore, our feature selection procedure was based on correlations between

ctual and regression-predicted rewards, to capture the relative predic-

ive performance, not the absolute predictive performance. This focus

n within-subject differences between conditions also has the advan-

age of being less sensitive to confounding individual differences such

s vascular response properties. 

. Methods 

For this project, data from five different studies were used. First,

o establish the BRS , the Monetary-Incentive-Delay task (MID; Fig. 1 A)

ith three levels of monetary outcomes ( + 5 €, 0 €, -5 €) was used, which

ill from now on be referred to as MID train . To test whether the BRS

eneralizes to the MID task with five levels of monetary outcomes

 + 5 €, + 1 €, 0 €, -1 €, -5 €) from different participants using different scan-

ers and scanning parameters, openly available data from Srirangarajan

nd colleagues (2021) was used ( Fig. 1 B). This dataset will from now
3 
n be referred to as MID validation task (MID val ). In addition, to in-

estigate whether the BRS is able to predict differences in reward in a

ifferent task with monetary outcomes using a block design instead of

n event related design we utilized the Gambling task ( Fig. 1 C) from

he Human Connectome Project (HCP). Further, to assess the construct

alidity and test whether the signature is specific to monetary reward,

e applied it to a moral conflict learning paradigm, in which partici-

ants learn that one action leads to high-monetary rewards for them-

elves and a high-shock to someone else, while the other action leads

o low monetary rewards for self and a low-shock to someone else. The

esults of this analysis are reported elsewhere (Fig. 8 and Supplemen-

ary Table 9; Fornari et al., under revision, and included in the reply to

eviewers). Finally, to assess whether the BRS generalizes to negative

motional salience, we employed the novel Disgust-Delay Task (DDT;

ig. 1 D). While all the above task explore the processing of outcomes

hat are contingent on participant’s choices, to characterize the tuning

f the BRS during passive viewing of other people’s emotions, we ap-

lied it to an unpublished dataset from our laboratory that includes a

https://www.zotero.org/google-docs/?wELR3G
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ovel Emotion Viewing task (EVT; Fig. 1 E). As we found that viewing

egative facial expressions loaded positively on the BRS , a finding that

as been associated with information seeking, we performed an online

ehavioral study (Emotion Rating Task, ERT; Fig. 1 F) that confirmed

hat participants find negative and positive facial expressions more in-

eresting than neutral facial expressions. 

.1. Participants 

For the MID train and the DDT task the same 40 participants were used

hich were collected from a university sample. One participant had a

it rate of zero in both tasks, indicating that the participant never expe-

ienced reward. We thus excluded this participant from the analysis. The

emaining 39 participants ( M age = 23.62, SD age = 3.17; 28 females) were

ight-handed with normal or corrected to normal vision, spoke English

uently, were not on any psychoactive medication influencing cognitive

unction, and had no record of neurological or psychiatric illness. The

tudy was approved by the Erasmus Research Institute of Management

ERIM; Protocol NR: 2018/02/06-61976ssp) internal review board and

as conducted according to the Declaration of Helsinki. 

For the MID val , nineteen subjects completed the MID task while being

canned with a multi-band acquisition protocol. According to the pre

egistered exclusion criteria, data from three subjects were excluded due

o excessive motion during at least one of the three task runs, while data

rom four subjects were excluded due to equipment failure (i.e., faulty

esponse registration by a new button box), leaving twelve subjects total

or analyses. For the justification of the sample size and details about

articipants see the paper by Srirangarajan and colleagues (2021) or

ontact the authors (Srirangarajan and colleagues). 

For the HCP gambling task, task-based fMRI recordings were used

rom 1206 participants (HCP All Family Subjects). Out of these 1206

articipants, 1084 had complete fMRI data for both runs of the Gam-

ling task. Additional behavioral measures on the individual partici-

ants can be downloaded from the project website ( Van Essen et al.,

012 ). Individual demographic data is unavailable for these datasets due

o data-privacy concerns ( Van Essen et al., 2012 ), but summary demo-

raphic data for the 1206 participants (of which only 1084 performed

he gambling task and are used here) were reported as M age = 29.31,

D age = 3.67; 657 females. For the EVT, 34 participants were used which

ere collected from a university sample. Three subjects were excluded

ue to missing data and four additional subjects were removed due to ex-

essive image distortion. The remaining 27 participants (M age = 23.04,

D age = 2.29; 12 females) were right-handed with normal or corrected

o normal vision, spoke English fluently, were not on any psychoactive

edication influencing cognitive function, and had no record of neuro-

ogical or psychiatric illness. The study was approved by the University

f Amsterdam (UvA; Protocol 2019-EXT-11148) Ethics Review Board of

he Faculty of Social and Behavioral Sciences and was conducted ac-

ording to the Declaration of Helsinki. All participants were reimbursed

or their participation with 10 €/hour. 

For the ERT 200 participants ( M age = 26.33, SD age = 9.439; 96 fe-

ales) completed five separate experiments that included 40 individu-

ls each. Participants were recruited online from Prolific ( https://www.

rolific.co/ ), with previous participation in other studies from the lab as

xclusion criteria. The study was approved by the University of Amster-

am (UvA; Protocol 2022-EXT-15474) Ethics Review Board of the Fac-

lty of Social and Behavioral Sciences and was conducted according to

he Declaration of Helsinki. Participants’ remuneration was 7.5 €/hour. 

.2. Task and Stimuli 

.2.1. Monetary-Incentive-Delay task ( MID train ) 

The MID train consisted of 108 trials of approximately 9 s each. Dur-

ng each trial, participants saw one of three cues (cue phase, 1 s), were

hen asked to fixate on a crosshair as they waited a variable interval (de-

ay phase, 2000–3000 ms), and then responded to a white target square
4 
hat appeared for a variable length of time (target phase, 150–450 ms)

ith a button press ( Fig. 1 A). Feedback (outcome phase, 1 s), which

ollowed the disappearance of the target, notified participants whether

hey had won or lost money during that trial. On incentivized trials,

articipants could win or avoid losing money by pressing the button

uring target presentation. On neutral trials, no money could be won

r lost. Task difficulty, in the form of the length of time the target was

resented, was set adaptively throughout the task such that each par-

icipant should succeed on 66% of his or her target responses. This was

one to make subjects with different performance levels comparable

nd prevent participants from getting frustrated. Cues signaled poten-

ial reward ( + 5.00 €), potential loss (- 5.00 €), or no monetary outcome

0 €). Trial types were pseudo-randomly ordered within each session

 Knutson et al., 2000 ). Participants were instructed that at the end of

he experiment one trial would randomly be chosen and that the per-

ormance on this trial would determine their remuneration. In the MID

ask we focus on the feedback phase as we are interested in the neural

esponse associated with receiving a monetary outcome. We acknowl-

dge that we re-used text for the task description from ( Knutson et al.,

000 )). 

.2.2. MID val 

Since the main goal of the study by Srirangarajan and colleagues

2021) was to examine whether acquiring fMRI data with multi-

and versus single-band scanning protocols compromises detection of

esolimbic activity during reward processing, the fMRI data was col-

ected in three runs. Importantly, the MID task was identical across all

hree runs. The MID val was similar to the MID train with some excep-

ions. First, the MID val included six task trial conditions: a large gain

ondition ( + 5.00 $); a medium gain condition ( + 1.00 $); a no gain con-

ition ( + $0.00); a no loss condition (- $0.00); medium loss condition

– 1.00 $); and a large loss condition (–5.00 $). Each trial condition

as repeated 12 times in a pseudorandom order, totalling 72 trials. Fur-

hermore, timing differed slightly. The cue phase was now 0–2 s, the

elay phase was 2–4 s, the target phase appeared briefly between 4–4.5

, the outcome phase lasted 6–8 s, and the Inter-Trial Interval lasted 2,

, or 6 s. Thus, each trial lasted an average of 12 s (including the ITI).

s before, adaptive timing of target duration within condition ensured

hat subjects succeeded in “hitting ” targets on approximately 66% of

he trials ( Knutson et al., 2005 ). Thus, each MID task run lasted 864

 in total (approximately 14.4 min), and all three runs were acquired

uring a single session, but with counterbalanced ordering across sub-

ects. We acknowledge that we re-used text for the task description from

rirangarajan and colleagues (2021) . 

.2.3. Gambling task from the Human Connectome Project (HCP) 

This task was adapted from the Gambling task developed by Del-

ado and Fiez ( Delgado et al., 2000 ). Participants played a card guess-

ng game where they were asked to guess the number on a mystery card

represented by a “? ”) in order to win or lose money ( Fig. 1 C). Partici-

ants were told that potential card numbers ranged from 1-9 and were

sked to indicate whether they expected the mystery card number to

e more or less than 5 by pressing one of two buttons on the response

ox. Feedback was the number on the card generated by the program

s a function of whether the trial was a reward, loss or neutral trial, and

ould result in: 1) a green up arrow with “$1 ” for reward trials, 2) a red

own arrow next to -$0.50 for loss trials; or 3) the number 5 and a gray

ouble headed arrow for neutral trials. The “? ” was presented for up to

500 ms (if the participant responds before 1500 ms, a fixation cross was

isplayed for the remaining time), followed by feedback for 1000 ms.

here was a 1000 ms ITI with a “+ ” presented on the screen. The task

as presented in blocks of 8 trials that are either mostly reward (6 re-

ard trials pseudo randomly interleaved with either 1 neutral and 1 loss

rial, 2 neutral trials, or 2 loss trials) or mostly loss (6 loss trials pseudo-

andomly interleaved with either 1 neutral and 1 reward trial, 2 neutral

rials, or 2 reward trials). In each of the two runs, there were 2 mostly

https://www.zotero.org/google-docs/?mntcfD
https://www.prolific.co/
https://www.zotero.org/google-docs/?Z2cw5S
https://www.zotero.org/google-docs/?Z2cw5S
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eward and 2 mostly loss blocks, interleaved with 4 fixation blocks (15 s

ach). This experiment was designed to be analyzed in blocks of mainly

eward blocks and mainly loss blocks. As a consequence, here we do not

nalyze a specific period within each trial, but the average activation

cross several trials within each block type. We acknowledge that we

e-used text for the task description from ( Delgado et al., 2000 ). 

.2.4. Disgust-Delay Task (DDT) 

A new paradigm termed the Disgust-Delay-Task (DDT) inspired by

he MID task ( Knutson et al., 2000 ) was developed ( Fig. 1 D). In this

ask, participants had to press a button during the presentation of a

arget stimulus, i.e., a black rectangle. They were then informed, dur-

ng the feedback phase, about whether the trial was a success or not.

owever, instead of winning money, or avoiding losing money, dur-

ng the outcome phase, participants then either saw a disgusting im-

ge or a neutral image depending on their performance. Disgusting im-

ges were selected based on a pretest that ensured that these images

voked disgust specifically and no other negatively valenced emotions

see Appendix 1). On each trial of the DDT, participants were first pre-

ented with a fixation cross for 2-3s ( Fig. 1 D). Subsequently, the tar-

et stimulus was presented for 150-450 ms depending on the partici-

ants’ performance. As in the MID tasks above, an adaptive algorithm

as implemented which varies the duration to ensure an equal number

f successful and unsuccessful trials (50% each). Afterwards, the par-

icipants received feedback whether or not they hit the target in time

or a period that varied between 2-3 s. This was followed by another

xation cross that varied between 2-3 s. The trial ended with the pre-

entation of either a neutral image or a disgusting image for 4 s de-

ending on whether the participant hit or missed the target. Next, par-

icipants had to wait for a period jittered between 3-5 s. Participants

ompleted 72 trials of the DDT. Here, we can thus analyse two periods

f interest. During the feedback period, we can investigate the impact

f a non-financial reinforcer (i.e., success or failure feedback) on brain

ctivity. During the outcome phase, we can investigate the impact of

eural response to the experience of disgust triggered by the disgusting

mages. 

.2.5. Emotion Viewing Task (EVT) 

The EVT will be subject to a full publication, and will only be de-

cribed briefly here. Participants viewed actors expressing six different

motions at two different intensities. Specifically, there were four dif-

erent actors that differed in age and gender (females aged 29, 27; males

ged: 24, 54). Each of the four actors expressed anger, disgust, fear, hap-

iness, pain and sadness at high and low intensity. In addition, the actors

lso expressed neutral demeanor, with blinking as the only deliberate

ovement. Thus, leading to a total 4 actors x 6 emotions x 2 intensi-

ies + 4 actors x 1 neutral = 52 videos (one more condition, a neutral

acial expression with deliberate facial movements was included in the

tudy but will not be analyzed or reported here). The task was admin-

stered in eight runs, in which the 52 videos were repeated in random

rder. Participants were instructed to view the videos while feeling with

he actor, without moving facial muscles or silent verbalization of the

motion name. On each trial of the EVT, participants were presented

ith a fixation cross, jittered between 3-10 s, and subsequently saw a

ideo for 1s. In total, the whole task lasted for approximately 75 min-

tes. The stimuli had been selected from a larger pool of recorded facial

xpressions based on an online validation. In the validation, participants

eported how much of each emotion (anger, disgust, fear, happiness,

ain and sadness) was visible in each video on a ten point scale. We

hen selected the neutral and the low and high intensity movies for each

motion so that (a) the average rating did not differ across the emotions

e.g. there was as a high an angry rating for the Anger video as painful

ating in the Pain video) for a given intensity, (b) the rating was higher

or the high than the low intensity movies and (c) higher in the low in-

ensity than in the neutral movies, and (d) ratings on off-target emotions
5 
as minimal (e.g. a High-Disgust movie would not have high ratings on

ny other emotion). 

.2.6. Emotion Rating Task 

It has been argued that negatively valenced stimuli activate reward

rocessing, because they are more interesting than neutral stimuli, and

articipants are motivated to seek information ( Oosterwijk et al., 2020 ).

o verify the hypothesis that our positive and negative emotional facial

xpressions are more interesting to watch than our neutral facial expres-

ions, a separate pool of participants (online) were asked to rate ‘ How

nteresting did you find this video ’ on a Likert scale from 1 (Extremely

ninteresting) to 10 (Extremely interesting) on part of the movies used

n the Emotion Viewing Task. Only high intensity movies were used,

ogether with the neutral condition. Because there was only one posi-

ive emotion (happiness) and one neutral, but several negative emotions

anger, fear, disgust, pain, and sadness), an imbalance that may bias re-

orts, we asked five separate pools of participants to view a balanced

et of three types of videos each: the neutral, the high intensity positive

nd one of the high intensity negative facial expressions, for a total of 3

ategories x 4 actors = 12 ratings each, in randomized order. 

.3. fMRI acquisition 

For MID train and DDT, the fMRI images were collected using a 3T

iemens Verio MRI system. Functional scans were acquired by a T2 ∗ -

eighted gradient-echo, echo-planar pulse sequence in descending in-

erleaved order (3.0 mm slice thickness, 3.0 × 3.0 mm in-plane resolu-

ion, 64 × 64 voxels per slice, flip angle = 75°). TE was 30 ms, and TR

as 2,030 ms. A T1-weighted image was acquired for anatomical refer-

nce (1.0 × 0.5 × 0.5 mm resolution, 192 sagittal slices, flip angle = 9°,

E = 2.26 ms, TR = 1900 ms). 

For MID val , all data were acquired on a 3 Tesla General Electric

canner with a 32-channel head coil at the Stanford Center for Cogni-

ive and Neurobiological Imaging (CNI). Structural (T1-weighted) scans

ere first acquired for all participants. Functional (T2 ∗ -weighted) im-

ges for single-band and multi-band scans were then acquired using the

ollowing common parameters: TE = 25 ms, FOV = 23.8 × 23.8 cm; 2

cquisition matrix = 70 × 70, no gap, phase encoding = PA, voxel di-

ensions = 3.4 × 3.4 × 3.4 mm. Additional parameters that varied be-

ween scanning protocols included: (1) multi-band factor = 1, TR = 2000

sec, flip angle = 77°, number of slices = 41; (2) multi-band factor = 4,

R = 500 msec, flip angle = 42°, number of slices = 32; (3) multi-band

actor = 8, TR = 500 msec, flip angle = 42°, number of slices = 41. All

MRI data were reconstructed using 1D-GRAPPA ( Blaimer et al., 2013 ).

or more information about the scanning protocol please refer to the

aper by Srirangarajan and colleagues (2021) . 

For the HCP project, the data was collected using a customized

T Siemens Connectome Skyra with a standard 32-channel Siemens

eceiver head coil and a body transmission coil. T1-weighted high-

esolution structural images were acquired using a 3D MPRAGE se-

uence with 0.7 mm isotropic resolution (FOV = 224 × 224 mm, ma-

rix = 320 × 320, 256 sagittal slices, TR = 2400 ms, TE = 2.14 ms,

I = 1000 ms, FA = 8°) and used to register functional MRI data

o a standard brain space. Functional MRI data were collected using

radient-echo echo-planar imaging (EPI) with 2.0 mm isotropic resolu-

ion (FOV = 208 × 180 mm, matrix = 104 × 90, 72 slices, TR = 720 ms,

E = 33.1 ms, FA = 52°, multiband factor = 8, 253 frames, ∼3 m and

2 s/run). 

For the EVT, the fMRI images were collected using a 7T Phillips MRI

ystem equipped with an Tx8/Rx32 rf-coil (Nova Medical). Functional

cans were acquired by a T2 ∗ -weighted gradient-echo 3D echo-planar

maging (EPI; 1.6 mm slice thickness, 1.6 × 1.6 mm in-plane resolution,

28 × 128 voxels per slice, flip angle = 13°). TE was 19.45 ms, and

R was 1816 ms. A T1-weighted image (MPRAGE) was acquired for

natomical reference (0.8 × 0.8 × 0.8 mm resolution, 232 sagittal slices,

ip angle = 8°, TE = 3.29 ms, TR = 3000 ms). 

https://www.zotero.org/google-docs/?qPr1rV
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.4. Preprocessing 

For the MID train , MID val and the DDT, the fMRI data were

reprocessed using fMRIPrep version 1.0.8, a Nipype based tool

 Gorgolewski et al., 2011 ). We chose fMRIPrep because it addresses the

hallenge of robust and reproducible preprocessing as it automatically

dapts a workflow based on best-in-class algorithms to virtually any

ataset, enabling high-quality preprocessing without the need of man-

al intervention ( Esteban et al., 2019 ). Each T1w volume was corrected

or intensity nonuniformity and skullstripped. Spatial normalization to

he International Consortium for Brain Mapping 152 Nonlinear Asym-

etrical template version 2009c ( Esteban et al., 2016 ) was performed

hrough nonlinear registration, using brain-extracted versions of both

1w volume and template. Brain tissue segmentation of cerebrospinal

uid (CSF), white matter (WM), and gray matter was performed on the

rain-extracted T1w. Field map distortion correction was performed by

oregistering the functional image to the same-subject T1w image with

ntensity inverted ( Caballero-Gaudes and Reynolds, 2017 ) constrained

ith an average field map template ( Tustison et al., 2010 ). This was

ollowed by coregistration to the corresponding T1w using boundary-

ased registration ( Smith et al., 2002 ) with 9 degrees of freedom. Mo-

ion correcting transformations, field distortion correcting warp, blood

xygen level-dependent images-to-T1w transformation, and T1w to tem-

late Montreal Imaging Institute (MNI) warp were concatenated and

pplied in a single step using Lanczos interpolation. Physiological noise

egressors were extracted using CompCor ( Cox and Hyde, 1997 ). Prin-

ipal components were estimated for the two CompCor variants: tem-

oral (tCompCor) and anatomical (aCompCor). Six tCompCor compo-

ents were then calculated including only the top 5% variable voxels

ithin that subcortical mask. For aCompCor, six components were cal-

ulated within the intersection of the subcortical mask and the union

f CSF and WM masks calculated in T1w space, after their projec-

ion to the native space of each functional run. Frame-wise displace-

ent ( Treiber et al., 2016 ) was calculated for each functional run us-

ng the implementation of Nipype. For more details of the pipeline, see

ttps://fmriprep.org/en/latest/workflows.html . After the preprocessing

he voxel size of the images is 3 ∗ 3 ∗ 3.5 mm. 

For the HCP data, preprocessing of the images included motion cor-

ection, distortion correction, co-registration and normalized to MNI

pace as described in the HCP 1200 Subjects Release ( Glasser et al.,

013 ). 

For the EVT, the whole brain fMRI data was preprocessed and an-

lyzed using SPM12 (7771; Wellcome Trust Centre for Neuroimaging,

CL, UK) with MATLAB R2020b version 9.9.0 (The MathWorks Inc.,

atick, USA). The preprocessing pipeline was organized as follows: re-

lignment to the first image of every run and then to the estimated aver-

ge (two-pass), co-registration of anatomical images to the mean func-

ional image (rigid body transformation, DOF = 6), segmentation of the

natomical scan that yields normalization parameters that were then

sed to bring the EPI images to MNI-space and voxel sizes were resam-

led to 1 × 1 × 1mm for the functional images. In order to completely

ncorporate the entire brain (including cerebellar areas in all scans, the

ounding box settings were changed to [-90 -126 -72; 90 90 108], as

PM’s default settings have been reported as a risk to omit some of the

erebellar areas ( Gazzola and Keysers, 2009 ). 

.5. Statistical analyses 

.5.1. MID train & MID val 

To model all possible outcomes of the MID tasks for every partici-

ant, we estimated a general linear model (GLM) using regressors for

nsets of the outcome phase for successful high reward trials (HR-won:

eceived + 5.00 €), unsuccessful high reward trials (HR-lost: did not re-

eive + 5.00 €), successful low reward trials (LR-won: received + 1.00 €;
or MID val only), unsuccessful low reward trials (LR-lost: did not receive

 1.00 €; for MID val only), successful neutral trials (NT-won: 0 €; for the
6 
ID val the neutral gain, i.e.. + 0 €, and neutral loss trials, i.e. -0 € were

ombined), unsuccessful neutral trial (NT-lost: 0 €), successful low loss

rials (LL-won: did not lose 1.00 €; for MID val only), unsuccessful low loss

rials (LL-lost: did lose 1.00 €; for MID val only), successful high loss trials

HL-won: did not lose 5.00 €) and unsuccessful high loss trials (HL-lost:

ost 5.00 €). The duration of the epoch for the outcome phase was 1 s,

nd the beginning of the outcome phase was used as onset time. Aver-

ge background, WM and CSF signal, framewise displacement, six head

otion regressors, and six aCompCor (which are component based noise

orrection regressors) regressors, all obtained from fMRIprep, were en-

ered as regressors of no interest. First, a smoothing kernel of 5 mm full

idth at half maximum was applied. For consistency, the same smooth-

ng procedure was applied to all other datasets as well. Subsequently,

ll regressors of interest (but not regressors of no interest) were con-

olved with the canonical hemodynamic response function. Linear con-

rasts were computed between HR-won and HR-lost trials, LR-won and

R-lost trial, NT-won and NT-lost trials, LL-lost and LL-won trial, HL-

ost and HL-won trials. These contrasts were chosen to isolate the ef-

ect of receiving or losing money by means of comparing each regres-

or with the regressor of opposite outcome within the same condition.

s a consequence, only neural activation related to receiving or losing

oney should remain as all other aspects of the contrasted trials are

he same. The resulting subject level t-maps were then converted to z-

aps. Here, we use the z-maps as the primary input to our multivariate

attern analysis because z-maps represent effect-sizes in units of vari-

nce, that should be more comparable across experiments and designs

han the simple difference between the parameter estimates, which are

n arbitrary units, or the t-maps that depend on the sample size in terms

f acquired volumes. As the purpose of the study by Srirangarajan and

olleagues (2021) was to test whether acquiring FMRI data with multi-

and versus single-band scanning protocols compromises detection of

esolimbic activity during reward processing, the fMRI data was col-

ected in three runs. For this study we were however not interested in

he effects of scanning protocols. As a consequence, we averaged over

he z-maps for each subject across the three runs to increase the signal

o noise ratio. 

.5.2. DDT 

To model the experience of disgust and the experience of viewing

eutral images we estimated a GLM using regressors for onsets of the

icture presentation phase of the DDT for the presentation of disgusting

mages and neutral images. The duration of the epoch for the picture

resentation phase was 4 s, and the beginning of the picture presentation

hase was used as onset time (see Fig. 1 D). 

In addition, to explore whether the BRS predicts monetary outcomes

pecifically or generalizes to rewarding versus loss outcomes more gen-

rally, we modeled the feedback phase of the DDT. As the structure of

he MID and the DDT are very similar the only difference here is that

nstead of monetary outcome the feedback is purely motivational. The

uration of the epoch for the feedback phase was 2 s since this was the

inimum of time it lasted on every trial. We defined the feedback phase

y counting back two seconds from the onset of the Anticipation phase

see Fig. 1 D). Lastly, to have a neutral period to compare the neural pat-

erns associated with disgusting and neutral images to, we modeled the

eural activation of viewing the fixation cross at the beginning of each

rial (Motivation Delay). This period was chosen because it was most

istant in time from the picture presentation phase. The duration of the

poch for the motivation delay was 2 s since this was the minimum of

ime it lasted on every trial (see Fig. 1 D). As above, average background,

M and CSF signal, framewise displacement, six head motion regres-

ors, and six aCompCor regressors, all obtained from fMRIprep, were

ntered as regressors of no interest. First, a smoothing kernel of 5 mm

ull width at half maximum was applied. Next, all regressors of inter-

st (but not the nuisance regressors) were convolved with the canonical

emodynamic response function. Linear contrasts were computed be-

ween the presentation of disgusting images and the fixation period and

https://fmriprep.org/en/latest/workflows.html
https://www.zotero.org/google-docs/?iVdIYC
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he presentation of a neutral image and the fixation period. As before,

he subject level t-maps were converted to z-maps to render them more

omparable across experiments. 

.5.3. HCP 

Since the HCP gambling task was administered in a block design

nd the ITIs between trials were short we employed a GLM using re-

ressors for onsets of the reward blocks, loss blocks and fixation blocks.

he duration of the reward and loss blocks were 28s each whereas the

xation period was 15s. Twelve motion regressors (x translation in mm,

 translation in mm, z translation in mm, x rotation in degrees, y rota-

ion in degrees, z rotation in degrees, derivative of x translation, deriva-

ive of y translation, derivative of z translation, derivative of x rotation,

erivative of y rotation, derivative of z rotation), the absolute root mean

quare (RMS) motion and the relative RMS motion, obtained from the

CP preprocessing pipeline, were added as regressors of no interest. Dif-

erent nuisance regressors were applied here as the data was obtained

n preprocessed format from the HCP website and only the 14 regressors

entioned in the previous sentence were available. As before, as a first

tep, a smoothing kernel of 5 mm full width at half maximum (FWHM)

as applied. Afterwards, all regressors of interest (but not the regres-

ors of no interest) were convolved with the canonical hemodynamic

esponse function. Linear contrasts were computed between the reward

lock and the fixation block, the loss block and the fixation block and

he fixation block and the baseline. Again, the resulting subject level

-maps were subsequently converted to z-maps. 

.5.4. EVT 

Data were analyzed using a GLM that contained one regresser per

timulus category (i.e. one for Anger High, one for Anger Low, one for

ain High, one for Pain Low, …., one for neutral), modeled as a box-

ar of duration 1s aligned on each movies onset, then convolved with

he hemodynamic response function. All six head motion regressors ob-

ained from the preprocessing pipeline, were entered as regressors of

o interest. A smoothing kernel of 5 mm full width at half maximum

as applied to the EPI images. Linear contrasts were computed to sum

he parameter estimates for each video type across the runs. As before,

he subject level t-maps were converted to z-maps to render them more

omparable across experiments. 

.5.5. ERT 

For each of the five pools of participants separately, ratings were an-

lyzed with paired samples t-tests that compared the negative emotion

resented for that group against happy and neutral. Student t-tests were

sed for parametric data, and Wilcoxon signed-rank for non-parametric

ata. Both p-values and Bayes Factor values were calculated. 

.6. Multivariate pattern analyses 

.6.1. Creation of the BRS 

We used the normalized and smoothed (5mm FWHM) z-maps to de-

elop population-level reward-predictive patterns, as previous studies

uggested that smoothing could improve inter-subject functional align-

ent while retaining sensitivity to mesoscopic activity patterns that

re consistent across subjects ( Etzel et al., 2011 , Op de Beeck, 2010 ,

hmuel et al., 2010 ). A LASSO-PCR model (least absolute shrinkage

nd selection operator-regularized principal components regression;

 Wager et al., 2011 , Wager et al., 2013 )) was then trained on the whole-

rain maps from the subject level z-maps derived from the analyses de-

cribed above. The rationale behind using LASSO-PCR is twofold. First,

o deal with the fact that fMRI datasets contain many voxels with cor-

elated signals that are challenging for regression analysis, LASSO-PCR

oes not use each voxel as an individual predictor, but applies princi-

al component analysis to the fMRI data to summarize the data using

rthogonal components. Next, to focus on the most informative com-

onents, a LASSO regression is used to predict the outcome variable
7 
reward magnitude in our case) from component scores, which adds a

enalty term to the model to shrink less important principal component

oefficients to zero. Specifically, the LASSO-PCR model was trained on

he z- maps (HR-won > HR-lost, NT-won > NT-lost; HL-lost > HL-won)

rom the MID train to predict the 3 different levels of monetary outcome

 + 5.00 €, 0.00 € & -5.00 €). For feature selection, we identified vox-

ls that correlated more strongly with reward rather than salience. As

xplained in the introduction, this was done to maximize relative predic-

ion performance rather than absolute prediction, because reward pro-

essing has been found to be context dependent (( Bateson et al., 2003 ,

uber et al., 1982 , Louie et al., 2013 , Simonson, 1989 ) and there are

o absolute values assigned to individual options. Specifically, given

he three parameter estimate images for each participant (High Reward:

R-won > HR-lost, Neutral: NT-won > NT-lost, High Loss: HL-lost > HL-

on), we can consider two codings: one for outcome (1, 0, -1) and one

or salience (1, 0, 1). We can then compute the Spearman correlation be-

ween the parameter estimates V j at each voxels j and the outcome and

alience coding separately for each subject within the cross validation

oop. As we know that the spacing is uncertain, because rewards might

ot be equidistant from zero as losses ( Kahneman, 2011 ), we use the

pearman instead of the Pearson correlation. We then selected voxels

uch that 𝑟 ( 𝑉 𝑗 , 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ) ≠ 0 and |𝑟 ( 𝑉 𝑗 , 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ) | > |𝑟 ( 𝑉 𝑗 , 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 ) | .

t the group level, to do this, we first performed a two-sided Wilcoxon

igned-rank test on the correlation between voxel values and outcome

oding 𝑟 ( 𝑉 𝑗 , 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ) and then a one-sided Wilcoxon signed-rank test on

he difference between absolute values of the correlation between voxel

alues and outcome and voxel values and salience |𝑟 ( 𝑉 𝑗 , 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ) | >
𝑟 ( 𝑉 𝑗 , 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 ) | . We then selected all voxels for which 𝑝 𝑟 ( 𝑉 𝑗 , 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ) ≠ 0 <

and 𝑝 |𝑟 ( 𝑉 𝑗 , 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ) |> |𝑟 ( 𝑉 𝑗 , 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 ) | < 𝛼 where 𝛼 was chosen permissively

t 𝛼= 0.5 to allow for a reasonable amount of voxels to enter the LASSO-

CR model. More conservative thresholds were also applied to test the

obustness of the findings (see Appendix 2). To reiterate the feature se-

ection procedure, we correlated for each subject the parameter esti-

ates for each of the three conditions (High Reward, Neutral & High

oss) with the two codings (outcome and salience) at each voxel, to se-

ect the voxels that correlate more strongly with the outcome coding

han with the salience coding, while making sure that the voxels re-

pond to the outcome coding. This was done on each iteration of the

ross-validation on the training set to only allow voxels to enter the

ASSO-PCR model that respond stronger to outcome than to salience. 

The feature selection and model fitting were implemented using a 5-

old cross-validation procedure during which all participants were ran-

omly assigned to 5 different subsamples while ensuring that all images

rom an individual subject remained within a subsample and does not

pread across subsamples. We always used 4 subsamples for training

nd one for testing. As a result, out-of-sample prediction is always done

n new individuals, which prevents dependence across images from the

ame participants invalidating predictive accuracy. We obtained pre-

icted values by computing the dot product of the weight map com-

uted over 4 of the subsamples (at each iteration) and the z-maps of the

eft out subsamples and adding the intercept computed over the four

ubsamples for each subject and condition (at each iteration). To evalu-

te the predictive accuracy of the model, the Spearman correlation be-

ween the predicted monetary outcome levels and the actual outcomes

or the left-out subsample were computed at each fold, and then the

orrelations were averaged across folds. In accordance with the mass-

nivariate analyses and to identify which brain regions made reliable

ontributions to the model ( Wager et al., 2013 , Zhou et al., 2020 ), the

attern maps were thresholded at p < 0.001 (two-tailed; uncorrected)

sing bootstrap procedures with 5000 samples. The result was a spatial

attern of regression weights across the whole brain that significantly

ontributed to the prediction of monetary out-of-sample outcomes in

he MID train . To test for robustness, we also applied a more conserva-

ive threshold at FDR p < 0.05 (two-tailed) and a procedure in which

e first selected only voxels that were non-zero in at least 90% of the

ootstrap iteration and then applied FDR correction at p < 0.05 (see Ap-
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endix 2). We also computed the Bayes-Factor for the correlation be-

ween predicted and actual monetary outcome values to also be able to

est for evidence of absence of an effect ( Keysers et al., 2020 ). To calcu-

ate the Bayes-Factor for the correlation, Jeffreys exact Bayes Factor was

sed ( Ly et al., 2016 ) as implemented in the Pingouin python package

 Vallat, 2018 ). In addition, we evaluated whether the BRS ’s predictions

ithin a given condition (High Reward, Neutral, High Loss) are signifi-

antly different from zero, by means of a one sample t-test against zero.

ince not all of the predictions across conditions and experiments were

ormally distributed we used the Wilcoxon signed-rank test and the as-

ociated Bayes factors were computed as proposed by ( van Doorn et al.,

020 ), with a Cauchy prior with the scale 1 √
2 
. To compare the BRS ’s

redictions between conditions Wilcoxon rank-sum tests were employed

nd to compute the Bayes Factors we again used the procedure proposed

y ( van Doorn et al., 2020 ) . 

We also conducted within-person forced-choice discrimination,

here two activation maps from the same participant were compared,

nd the image with the higher overall signature response (i.e., the

tronger expression of the signature pattern) was classified as associ-

ted with higher reward. If this matched the actual labels the classifi-

ation was labeled as correct and otherwise as incorrect. Subsequently

he average across subjects was computed to determine forced-choice

ccuracy. We conducted these forced-choice tests for all combinations

f conditions (i.e., HR vs. NT, NT vs HP & HR vs HP). The advantage of

he forced-choice test is that it is ‘threshold free’ in the sense that an ab-

olute decision threshold across individuals is not required; zero is used

s the threshold for the difference between the two paired alternatives

 Wager et al., 2013 ). Thus, individual differences in the shape and am-

litude of the blood oxygen level dependent (BOLD) fMRI response do

ot add noise in this kind of test. To test for significance, permutation

ests were used where the order of conditions was permuted (N = 10000)

nd the accuracy was computed again. The empirical classification ac-

uracy was then compared to the null distribution of accuracies based

n permuted values to obtain p-values. 

.6.2. Validation on the MID val 

To test how well the BRS generalizes to new data involving mone-

ary outcomes the MID val was used. Specifically, we tested whether the

RS generalizes to a MID task with five levels of monetary outcomes

 + 5 €, + 1 €, 0 €, -1 €, -5 €) from different participants using differ-

nt scanners and scanning parameters. To this end, we obtained pattern

xpression values by computing the dot product of the cross-validated

eightmap (averaged across folds) of the reward pattern (created on

he MID train ) and the z-maps and adding the intercept (averaged across

olds) for each subject and condition from the MID val . For the MID val 

he High Reward (HR-won > HR-lost), Low Reward (LR-won > LR-lost),

eutral (NT-won > NT-lost), Low Loss (LL-lost > LL-won) and High Loss

HL-lost > HL-won) contrasts were used. The resulting pattern expres-

ion represents scalar response values, which constitute the predicted

onetary outcome for the given condition. The pattern expression val-

es were then tested for differences between experimental conditions.

e calculated the Spearman correlation between the pattern expression

alues and the actual monetary outcome values for each of the condi-

ions ( + 5 €, + 1 €, 0 €, -1 €, -5 €), with higher correlations representing

igher predictive accuracy, in the sense of variance of rewards explained

y the pattern expression values. Specifically, the predicted monetary

utcome values obtained from the dot multiplication (5 conditions ∗ 

2 subjects = 60 predicted monetary outcome values) were correlated

ith the 60 actual monetary outcomes in a single correlation. To es-

imate significance of the predictive performance, a permutation test

N = 5000) was performed where the true monetary outcome values

ere shuffled and the procedure was repeated. To assess the robustness

f the estimation of significance we also repeated the permutation tests

ith the root mean squared error as a predictive performance evalua-

ion metric (N = 5000). To test whether the predictions made by the

RS in the different conditions were different from zero and whether
8 
redictions between conditions were significantly different from each

ther, the same procedure as detailed above was used. As before, we

onducted within-person forced-choice discrimination to further assess

he predictive accuracy of the BRS. As above, permutation testing was

sed to evaluate statistical significance of classification accuracies. 

.6.3. Validation on the HCP Gambling task 

To investigate whether our BRS generalizes to a completely different

ask involving monetary outcomes, the HCP Gambling task was used.

pecifically, we tested whether the BRS generalizes to the Gambling

ith three different levels of monetary outcomes ( + 1 €, 0 €, -0.5 €)
hat were not symmetrically distributed around zero. As before, we ob-

ained pattern expression values by computing the dot product of the

ross-validated weightmap (averaged over folds) of the reward pattern

created on the MID train ) and the z-maps and adding the intercept (aver-

ged over folds) for each subject and condition from the HCP Gambling

ask and then tested the predictive performance using the Spearman

orrelation between actual monetary outcomes and predicted monetary

utcome values (3 conditions ∗ 1084 subjects = 3252 predicted mon-

tary outcome values). As above, permutation tests were used to esti-

ate significance. To test whether the predictions made by the BRS in

he different conditions were different from zero and whether predic-

ions between conditions were significantly different from each other,

he same procedure as detailed above was used. Again, we conducted

ithin-person forced-choice discrimination, to further assess the pre-

ictive accuracy of the BRS. As above, permutation testing was used to

valuate statistical significance of classification accuracies. To evaluate

he test-retest reliability of the HCP Gambling task, we also computed

he pattern response to the first and second run separately and then cal-

ulated the pearson, spearman and intraclass correlation between the

attern responses for the two runs. We chose to assess test-retest re-

iability for the HCP specifically because it was the only sample large

nough to get meaningful estimates of test-retest reliability. 

.6.4. Testing the specificity on the DDT task 

For specificity, the signature expression should not significantly dif-

er from zero when applied to z-maps from tasks involving other types

f emotionally salient outcomes. To assess the specificity of our BRS we

mployed the DDT task. We explored whether the BRS also predicts dis-

usting (coded as -1) versus neutral outcomes (coded as 0). In addition,

e also tested whether the BRS would be able to predict positive or

egative feedback in the disgust delay task. This was done to explore

hether the BRS predicts monetary outcomes specifically or generalizes

o rewarding versus loss outcomes more generally. As before, we ob-

ained pattern expression values by computing the dot product of the

ross-validated weight map (averaged over folds) of the reward pattern

created on the MID train ) and the z-maps and adding the intercept (aver-

ged over folds) for each subject and condition from the DDT task and

hen tested the predictive performance using the Spearman correlation

etween actual emotional outcomes (neutral vs disgusting images) and

redicted emotional outcomes (2 conditions ∗ 39 subjects = 78 predicted

motional outcome values). As above, permutation tests were used to es-

imate significance. To test whether the predictions made by the BRS in

he different conditions were different from zero and whether predic-

ions between conditions were significantly different from each other,

he same procedure as detailed above was used. As above, we conducted

ithin-person forced-choice discrimination, to further assess the predic-

ive accuracy of the BRS. As above, permutation testing was used to

valuate statistical significance of classification accuracies. 

.6.5. Testing the specificity and generalizability of the EVT task 

To further characterize the specificity and generalizability to other

xperimental task structures of our BRS we employed the EVT task. We

nvestigated whether simply viewing the emotions of others loads onto

he BRS , compared to neutral facial expressions, or whether the BRS

s specific for first person rewards or losses. In addition, we explore
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Table 1 

Coding of outcome and salience for feature selection. 

Parameter estimate image Outcome Salience 

High Reward (HR) 1 1 

Neutral (N) 0 0 

High Loss (HL) -1 1 
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Table 3 

Forced choice accuracies (%) for the MID train . 

HR N HL 

HR - 

N 67 ∗∗∗ - 

HL 92 ∗∗∗ 95 ∗∗∗ - 

HR = High Reward, N = Neutral; HL = High Loss; ∗ = p perm < 0.05; 
∗∗ = p perm < 0.01; ∗∗∗ = p perm < 0.001. 
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hether viewing negatively valenced facial expressions (actors express-

ng anger, disgust, fear, pain, sadness) would load negatively on the BRS,

n analogy to first person losses, or whether they would load positively

n the BRS as has been proposed in studies of morbid curiosity where

he information content of other people’s negative emotions is reward-

ng ( Oosterwijk et al., 2020 ). As before, we obtained pattern expression

alues by computing the dot product of the cross-validated weight map

averaged over folds) of the reward pattern (created on the MID train )

nd the z-maps and adding the intercept (averaged over folds) for each

ubject and condition from the EVT task. To test whether the predic-

ions made by the BRS in the different conditions were different from

ero and whether predictions between conditions were significantly dif-

erent from each other, the same procedure as detailed above was used.

s above, we conducted within-person forced-choice discrimination, to

urther assess the predictive accuracy of the BRS. The difference to the

nalysis above is that here we computed two-sided p-values since there

ere no clear predictions about whether observing negative emotions of

thers should load positively or negatively on the BRS compared to the

eutral expressions. As above, permutation testing was used to evaluate

tatistical significance of classification accuracies. 

. Results 

.1. Within-task prediction 

To create a generalizable BRS we first trained and tested our LAS-

OPCR model on the MID train using 5-fold cross validation and a thresh-

ld of p < 0.5 (threshold was applied within the cross-validation loop)

or the feature selection procedure. The analysis revealed that outcomes

n the left-out cross-validation folds in the MID train could be signifi-

antly predicted by the BRS ( RMSE = 2.89, p perm 

< 0.001, r = 0.72,

 perm 

< 0.001, BF 10 > 1000). The feature selection procedure selected

9% of voxels across the whole brain ( Fig. 2 A). Using the bootstrap pro-

edure, we observed that particularly voxels in the dorsal striatum and

he ventromedial prefrontal cortex (vmPFC) significantly contributed to

he predictive success of our model (at p < 0.001; Fig. 2 B and Table 2 ; for

ther thresholds see Appendix 2). Fig. 3 A shows the signature values ob-

ained when multiplying the z-maps of the individual participants with

he thresholded (p bootstrap < 0.001; see methods) BRS . For the forced

hoice analysis we observed significant classification accuracies for all

ests. However, classification accuracy was substantially higher between

ewarding and loss conditions and neutral and loss trials than between

eward and neutral conditions (see Table 3 ). 
Table 2 

Clusters for the significant voxels identified by 

Region peak_x peak_y peak_z 

R Dorsal Striatum 24 14 -2 

L Dorsal Striatum -20 12 -8 

R Occipital Pole 16 -92 -8 

vmPFC 2 44 -4 

L = Left; R = Right; vmPFC = ventromedial pre

voxels are shown, a complete list can be found in

used in the analysis. The table was generated usi

et al., 2019) 

9 
.2. Meta-analytic decoding of the BRS map 

To functionally characterize the BRS , the Neurosynth ( Yarkoni et al.,

011 ) decoder function was used to assess its similarity to the reverse

nference meta-analysis maps generated for the entire set of terms in-

luded in the Neurosynth dataset. Here the unthresholded z-map ob-

ained through the bootstrap procedure was used, since the neurosynth

ecoder works best on unthresholded whole brain maps. The most rel-

vant features were ‘reward’ and ‘monetary’ for the top 50 terms (ex-

luding anatomical terms) ranked by the correlation strengths between

he BRS map and the meta-analytic maps (see word cloud, size of the

ont scaled by correlation strength, Fig. 2 C). 

.3. Testing the generalizability on the MID val 

To test the generalizability of the BRS map we tested the predic-

ion performance on the MID val . This allowed us to evaluate how well

he BRS is able to predict relative reward magnitude based on activa-

ion patterns in new participants from a different scanner and with a

ifferent number of levels of monetary outcomes. Using the significant

oxels from the BRS map in Fig. 2 B we observed a significant predic-

ion of the relative monetary outcomes on the MID val ( RMSE = 2.97,

 = 0.75, p perm 

< 0.001, BF 10 > 1000; Fig. 3 B). To test the robustness of

his finding the prediction was also repeated using all voxels, and the

DR-corrected map (p < 0.05; see Appendix 2), and a map derived from

rst selecting the most consistent voxels and correcting using FDR (see

ethods). The robustness checks revealed very similar significant pre-

ictions on the MID val (see Appendix 2). For the forced choice analysis

e observed significant classification accuracies for the tests comparing

he reward to the loss condition and the neutral to the loss condition.

o significant classification accuracies were observed when contrasting

ewarding and neutral trials. In addition, no significant classification

ccuracy was observed when comparing high and low loss trials (see

able 4 ). 

.4. Testing the generalizability on the HCP gambling task 

To further test the generalizability of the BRS map we assessed the

rediction performance on the HCP gambling task . This enabled us to

est how well the BRS is able to predict on a much larger set of par-

icipants, from a different scanner, on a different task using a different

xperimental design (block vs event-related) and with different asym-

etric levels of monetary outcomes. Using the significant voxels from
the bootstrap procedure. 

peak_value volume_mm nr_voxels 

722.053 3456 432 

97.371 3152 394 

679.417 1464 183 

576.394 1248 156 

frontal cortex. Only clusters of at least 50 

 Supplementary Table S2. All voxels were 

ng the python package Atlasreader (Notter 

https://www.zotero.org/google-docs/?broken=Go3fx9
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Fig. 2. A) Mean weights for the out-of sample prediction on the MID train . B) Voxels significantly contributing to the out-of-sample prediction identified using the 

bootstrap procedure (p < 0.001). C) Word cloud showing the top 50 relevant terms (excluding anatomical terms) for the meta-analytic decoding of the BRS map. The 

size of the font was scaled by correlation strength (r min = 0.11, r max = 0.22). 
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he BRS map shown in Fig. 2 B, we observed a significant prediction of

he monetary outcomes on the HCP gambling task ( RMSE = 0.7, p perm 

<

.001, r = 0.21, p perm 

< 0.001, BF 10 > 1000; Fig. 3 C). To test the robust-

ess of this finding the prediction was also repeated using all voxels, and

DR-corrected map (p < 0.05) and a map derived from first selecting the

ost consistent voxels and correcting using FDR (see Methods). The ro-

ustness checks revealed very similar significant predictions on the HCP

ambling task (see Appendix 2). For the forced choice analysis we ob-

erved significant classification accuracies for all tests. However, as for

he MID tasks, the classification accuracy was substantially higher be-

ween rewarding and loss trials and neutral and loss trials than between

eward and neutral trials (see Table 5 ). The analysis of the test-retest

eliability revealed that there is a significant correlation between the
 d  

10 
atterns responses of the first and the second run of the HCP ( r pearson 

 0.24, p perm 

< 0.001; r spearman = 0.23, p perm 

< 0.001; r ICC = 0.24, p perm 

<

.001; BF 10 > 1000). 

.5. Testing the specificity on the DDT 

In order to evaluate the specificity of the BRS map we assessed the

rediction performance on the outcome phase of the DDT, in which par-

icipants see disgusting or neutral images. This enabled us to investigate

hether the BRS map predicts differences in emotional salience more

enerally or whether it more specifically captures differences in reward.

sing the significant voxels from the BRS map (see Fig. 2 middle) we

id not observe a significant prediction of the differences in outcomes
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Fig. 3. A) Violinplot for the predicted monetary outcomes across conditions in the MID train. B) Violinplot for the predicted monetary outcomes across conditions 

in the MID val. . C) Violinplot for the predicted monetary outcomes across conditions in the HCP gambling task. Because the HCP data contained 1084 subjects only 

30% of actual data points could be plotted. The darker dots at the edges are due to several points overlapping with each other. D) Violinplot for the predicted 

disgusting versus neutral outcomes in the DDT for the outcome phase. E) Violinplot for the predicted positive versus negative feedback in the DDT for the feedback 

phase. . F) Violinplot for the BRS values for the EVT. . The gray and green thick horizontal lines show the median of the High Happy and Neutral condition for visual 

comparison against the other conditions. Note that not to overload the panel, statistical comparisons are omitted, but are mentioned in the text and in Table 6 . 

For all panels: In the violin plots the circles represent individual observations arranged so that they do not overlap. Within the box and whisker plots, the white 

point represents the median, the box represents the lower and upper quartiles, the whiskers represent the 1.5 interquartile range. DID = Disgust Incentive Delay 

Task; MID = Monetary Incentive Delay Task; HCP = Human Connectome Project Gambling Task. ∗ :BF 10 > 3; ∗ ∗ :BF 10 > 10; ∗ ∗ ∗ :BF 10 > 100; red ∗ :BF 10 < 0.33. Note 

that we use BF10 values rather than p-values for the stars in the Fig. to provide evidence for the null or alternative hypothesis. For A-E, the stars above the violin 

represent the BF obtained from one-sample t-tests against zero, whereas the stars above the bars between violins represent the BFs obtained from Wilcoxon rank-sum 

tests comparing predictions. For F, all loadings were significantly different from zero (all BF 10 > 229, all p < 0.001), and comparisons across conditions are detailed in 

Table 6 , using forced choice statistics. 

11 
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Table 4 

Forced choice accuracies (%) for the MID val . 

Column1 HR LR N LL HL 

HR - 

LR 58 - 

N 58 50 - 

LL 92 ∗∗ 92 ∗∗ 92 ∗∗ - 

HL 92 ∗∗ 92 ∗∗ 100 ∗∗ 75 - 

HR = High Reward, LR = Low Reward, N = Neutral; LL = Low Loss; 

HL = High Loss; ∗ = p perm < 0.05; ∗∗∗ = p perm < 0.001.; ∗∗ = p perm < 0.01. 

Table 5 

Forced choice accuracies (%) for the HCP. 

HR N HL 

HR - 

N 53 ∗∗ - 

HL 73 ∗∗∗ 63 ∗∗∗ - 

HR = High Reward, N = Neutral; HL = High Loss; ∗ = p perm < 0.05; 
∗∗ = p perm < 0.01; ∗∗∗ = p perm < 0.001. 
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n the DDT, and most importantly, found Bayesian evidence for the ab-

ence of such differentiation ( RMSE = 0.9, p perm 

= 0.84, r = -0.13, p perm 

=
.28, BF 10 = 0.23; Fig. 3 D). To test the robustness of this finding the

rediction was also repeated using all voxels, and FDR-corrected map

p < 0.05), and a map derived from first selecting the most consistent vox-

ls and correcting using FDR (see Methods). The robustness checks did

ot reveal any significant prediction on the DDT either (see Appendix

). For the forced-choice analysis we found that the neutral trials could

ot be significantly distinguished from disgusting trials in the outcome

hase (33%, p = 0.98). 

To further assess the specificity of the BRS we also tested the feed-

ack phase of the DDT (see Fig. 1 D), in which participants are informed

hether they successfully performed the task or not. Using the signifi-

ant voxels from the BRS map shown in Fig. 2 B, we found a significant

rediction of feedback in the DDT ( RMSE = 0.92, p perm 

< 0.001, r = 0.38,

 perm 

< 0.001, BF 10 > 1000; Fig. 3 E). To test the robustness of this find-

ng the prediction was also repeated using all voxels, an FDR-corrected

ap (p < 0.05) and a map derived from first selecting the most consistent

oxels and correcting using FDR (see Methods). The robustness checks

evealed very similar significant predictions on the feedback phase of

he DDT (see Appendix 2). The forced-choice analysis revealed that the

uccessful trials could be significantly discriminated from unsuccessful

rials in the feedback phase (92%, p < 0.001). Notably, both distribu-

ions in the feedback phase are significantly below zero (see Fig. 3 E).

his may be due to the fact that the BRS is developed to maximize rel-

tive predictive performance. As a consequence, the predictive values

or the DDT feedback are all negative because relative to receiving a

onetary reward and succeeding at a given trial, just succeeding at a

iven trial is experienced as less rewarding. 

To test whether the neural activation elicited by the outcome phase

when viewing the pictures) may have a bleed-over effect on the mo-

ivational delay period and to assess whether the results presented

bove are robust to different modeling choices we ran a robustness

heck with average activity as baseline. Results were replicated for

oth the outcome and the feedback phase. As before, for the outcome

hase no significant prediction of differences in outcomes were observed

 RMSE = 1.03, p perm 

= 0.94, r = -0.14, p perm 

= 0.22, BF 10 = 0.42). For the

eedback phase, we again found a significant prediction of feedback in

he DDT ( RMSE = 0.78, p perm 

< 0.001, r = 0.47, p perm 

< 0.001, BF 10 >

000). 
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.6. Testing the specificity and generalizability on the EVT 

In order to further characterize the BRS, we investigated how the

rain response to watching facial expressions of other people’s emo-

ions would load on the BRS. Visual inspection of Fig. 3 F illustrates that

verall, witnessing emotional facial expressions, be they positive, neg-

tive or neutral, leads to positive loading on the BRS (one sample t-

est against zero, all BF 10 > 229, all p < 0.001, t > 4.5) with loading higher

or the more intense expressions (two intensity x 6 emotion repeated

NOVA: main effect intensity: F(1,26) = 17.53, p = 0.0003, BF incl = 6.99).

he forced-choice analysis ( Table 6 ) confirms that against the neutral

timulus (NT) all high-intensity emotions, be they positive (HH) or nega-

ive (SH, AH, FH, DH) generated significant discrimination performance,

xcept for Pain (PH > NT in 59% of cases, n.s.); and that for all negative

motions, except for Pain, the low intensity video led to lower values

n the BRS than the high intensity video. Finally, the High Happy video

id not lead to BRS loading that could be discriminated from that of

igh Sadness, High Anger or High Disgust. This positive loading was

xpected for the Happy condition and also for the Neutral conditions as

e observed the same result in the MID tasks and in the HCP. However,

ositive loading for all negative emotions, and more positive loading

han for the neutral facial expression is perhaps less expected. Research

n a phenomenon called morbid curiosity has however shown that peo-

le actually choose to view negatively valenced images over neutral im-

ges, and that doing so was associated with activation in reward related

rain regions ( Oosterwijk, 2017 , Oosterwijk et al., 2020 ). This prefer-

nce for negatively valenced material is thought to arise from a moti-

ation to approach informative stimuli, with negative material having

 higher information content than neutral material. To test whether our

oading on the BRS may reflect a similar process, we performed two

dditional analyses. First, we compared the topology of our BRS with

he activation pattern found by Oosterwijk and colleagues (Appendix

). This analysis revealed significant similarities (i.e., positive correla-

ion between the two maps: r = 0.25, p < 0.001). Second, we asked

 different set of participants, recruited online, to rate our high inten-

ity videos and our neutral videos on how interesting they found them.

ig. 4 shows that our happy, angry, disgusted and fearful facial expres-

ions were indeed reported to be more interesting than our neutral facial

xpressions (all p < 0.001, all BF 10 > 46), which could help explain why

atching them may involve information-approaching-related processes

hat are similar-enough to the reward signals that we trained the BRS to

apture. The only incongruence we find is that viewing the sad facial ex-

ressions did load significantly more than the neutral faces on the BRS,

hile online participants failed to find the sad facial expressions more

nteresting. 

.7. Using Neurosynth masks related to monetary outcomes for feature 

election 

To compare our data-driven feature selection approach to a more

heory driven feature selection approach we also used two Neurosynth

aps (( Yarkoni et al., 2011 ); see Table 8 ) related to monetary out-

omes for feature selection within the cross-validation loop. Specifi-

ally, we used a meta-analytic map created based on the term mone-

ary reward (Association test, FDR corrected for multiple comparisons

t p < 0.01) and on the term outcome (Association test, FDR corrected

or multiple comparisons at p < 0.01). A similar pattern of results as for

he data-driven feature selection approach reported in the main text

as found. Again the BRS significantly predicted monetary outcomes

n the MID val and the HCP gambling task, but did not significantly pre-

ict outcomes in the DDT. Performance on the HCP was slightly higher,

hereas performance on the MID val was slightly lower, which was ex-

ected as the data-driven feature selection was trained on another ver-

ion of the MID task, and consequently was more likely to perform

igher on a similar task. In contrast, the theory-driven approach was
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Table 6 

Forced choice accuracies (%) for the EVT. 

SH AH FH DH PH AL DL SL FL PL NT HL HH 

SH - 41 44 59 63 44 70 ∗∗∗ 67 ∗ 59 59 81 ∗∗∗ 64 44 

AH 59 - 44 70 ∗∗ 74 ∗∗ 70 ∗∗ 85 ∗∗ 67 ∗ 74 ∗∗ 74 ∗∗ 85 ∗∗∗ 63 59 

FH 56 56 - 74 ∗∗∗ 78 ∗∗ 70 ∗∗ 89 ∗∗∗ 74 ∗∗ 78 ∗∗∗ 78 ∗∗∗ 93 ∗∗∗ 74 ∗∗∗ 67 ∗ 

DH 41 30 ∗∗∗ 26 ∗∗∗ - 59 37 67 56 56 56 74 ∗∗∗ 48 37 

PH 37 26 ∗∗∗ 22 ∗∗∗ 41 - 52 59 44 52 44 59 48 30 ∗∗∗ 

AL 56 30 ∗∗∗ 30 ∗∗∗ 63 48 - 63 67 ∗ 63 70 ∗∗∗ 67 ∗ 63 41 

DL 30 ∗∗∗ 15 ∗∗∗ 11 ∗∗∗ 33 ∗ 41 37 - 44 44 48 59 52 33 ∗ 

SL 33 ∗ 33 ∗ 26 ∗∗∗ 44 56 33 ∗ 56 - 41 48 59 41 41 

FL 41 26 ∗∗∗ 22 ∗∗∗ 44 48 37 56 59 - 56 56 48 37 

PL 41 26 ∗∗∗ 22 ∗∗∗ 44 56 30 ∗∗∗ 52 52 44 - 52 37 48 

NT 19 ∗∗∗ 15 ∗∗∗ 7 ∗∗∗ 26 ∗∗∗ 41 33 ∗ 41 41 44 48 - 30 ∗∗∗ 26 ∗∗∗ 

HL 37 37 26 ∗∗∗ 52 52 37 48 59 52 63 70 ∗∗∗ - 44 

HH 56 41 33 ∗ 63 70 ∗∗∗ 59 67 ∗ 59 63 52 74 ∗∗∗ 56 - 

Numbers indicate the proportion of subjects in which the condition mentioned over the row is numerically larger 

than the one indicated in the column. The p values were assessed using a label permutation statistics. SH = Sad 

High, AH = Anger High, FH = Fear High, DH = Disgust High, PH = Pain High, AL = Anger low, DL = Disgust Low, 

SL = Sad Low, FL = Fear Low, PL = Pain Low, NT = Neutral; HL = Happy Low, HH Happy High; ∗ = p perm < 0.05; 
∗∗ = p perm < 0.01; ∗∗∗ = p perm < 0.001. 

Fig. 4. Violinplot for the ratings across positive, neutral and neg- 

ative emotions in the emotion rating task. Circles represent indi- 

vidual observations arranged so that they do not overlap. The box 

plot includes a white point for the median, a box for the quartiles, 

and whiskers for the max and min. Since the data was collected 

in five batches of participants (each containing videos of one neg- 

ative emotion while always containing the same Happy and Neu- 

tral videos) we pooled the observations for Happy and Neutral 

videos for visualization purposes only in the leftmost violins. As 

a consequence, there are less observations for the negative emo- 

tions than for the Happy and Neutral videos. A Bayesian repeated 

ANOVA with Happy and Neutral video ratings as within factor, 

and batch as between, showed that the difference between Happy 

and Neutral did not change across batches (BF incl main effect of 

video = 5.66 × 10 13 , BF incl main effect of batch = 0.278; BF incl in- 

teraction = 0.209). Green and gray horizontal lines represent the 

median value of the happy and neutral facial expressions for that 

pool of participants, respectively. The black dots on the happy vi- 

olin represent outliers, values above Q3 + 1.5 ∗ IQR or below Q1 - 

1.5 ∗ IQR. For the negative emotions, stars over the green or gray 

lines represent the significance of a paired comparison of the rat- 

ing for the negative emotion against those for the happy or neutral 

facial expressions, as detailed in Table 7 . 
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2  
ore task independent and more likely to perform similarly well across

asks. 

. Discussion 

In the current study, we developed a multivariate brain model, the

RS, to allow us to decode the relative degree of reward across condi-

ions in active decisions tasks. In particular, using the correlation be-

ween actual and decoded reward in the MID and HPC gambling task,

e show the ability of the BRS to explain a significant proportion of the

ariance in the reward magnitude involved. This BRS is not only able to
13 
redict variance in the monetary outcome in unseen subjects from the

ame sample but also generalizes to different samples using a different

ersion of the same task and also to entirely different tasks. Further, this

ignature was found to not only predict monetary outcomes, but also re-

arding outcomes in the form of positive versus negative feedback more

enerally. Relatedly, the BRS was found to load positively on prediction

rrors for money and for avoiding painful stimuli to others (a negative

einforcer) in a study currently under review elsewhere (but see Reply

o Reviewer) investigating learning under moral conflict ( Fornari et al.,

022 ). Importantly, the BRS values were appropriately signed, with wit-
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Table 7 

Comparison of interest ratings across conditions. 

Anger Disgust Fear Pain Sad 

Vs 

Neutral 

t (39) = 3.724 t (39) = 3.811 t (39) = 7.209 t (39) = 2.186 t (39) = 0.190 

p = 6.192e-04 p = 4.168e-05 p = 1.11e-08 p = 0.035 p = 0.850 

BF 10 = 46.843 BF 10 = 58.945 BF 10 = 1.165e + 6 BF 10 = 1.433 BF 10 = 0.173 

Vs 

Happy 

t (39) = -4.111 W = 64.5 t (39) = -3.46 t (39) = -5.304 t (39) = -7.302 

p = 1.96e-04 p = 1.522e-03 p = 1.323e-03 p = 4.772e-06 p = 8.28e-09 

BF 10 = 131.922 BF 10 = 890.132 BF 10 = 23.811 BF 10 = 3982.874 BF 10 = 1.536e + 6 

Table 8 

Neurosynth maps for monetary reward and outcome. 

Network Studies Date of Link to download 

Monetary Reward 97 04.10.2021 https://neurosynth.org/analyses/terms/monetary%20reward/ 

Outcome 385 04.10.2021 https://neurosynth.org/analyses/terms/outcome/ 
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essing shocks loading negatively on the BRS and receiving money, pos-

tively, which further speaks to the generalizability of its sensitivity to

einforcers as outcomes in decision-making tasks. With regards to such

utcomes, this BRS was found to be specific to rewarding outcomes and

id not generalize to emotionally salient (disgusting) images (when are

he result of a decision). However, when passively viewing facial ex-

ressions of other individuals, rather than outcomes arising from the

articipant’s own actions, viewing all facial expressions yielded posi-

ive BRS values, with almost all of them being larger than the neutral

acial expressions. This suggests that the BRS, when used in context in

hich participants do not need to make choices, may capture a wider set

f processes that future experiments will need to further characterize. 

To create the BRS that is sensitive to the neurocognitive underpin-

ings of reward processing, we trained a LASSOPCR model on the MID,

hich is the most consistently used task to evoke the neural mechanisms

ssociated with processing monetary outcomes ( Oldham et al., 2018 ).

o ensure that the BRS predicts reward specifically and not salience in

eneral, we only selected voxels for predictions that correlated more

trongly with outcomes (i.e., voxels that differentiate between reward,

eutral and loss outcomes), than with salience (i.e., voxels that differ-

ntiate only between neutral and consequential, reward or loss, out-

omes). We found that clusters of voxels in the bilateral dorsal striatum,

he vmPFC and the right occipital pole significantly decoded monetary

utcomes in novel participants from the same sample. We subsequently

ested whether the observed clusters indeed reflect reward processing

reas by means of using the Neurosynth ( Yarkoni et al., 2011 ) decoder.

his decoder compared our BRS to the entire set of terms included in

he Neurosynth database and found that the highest ranked associations

ere reward and monetary , providing converging evidence that the BRS

redicts rewarding outcomes. 

The finding that activation patterns in the dorsal striatum are predic-

ive of rewarding outcomes aligns well with previous fMRI studies that

ound that the striatum encodes prediction error signals ( ( Diekhof et al.,

012 , Galtress et al., 2012 , Haber and Knutson, 2010 , O’Doherty et al.,

004 ). The striatum has been consistently linked to both the anticipa-

ion and evaluation of rewarding outcomes ( Oldham et al., 2018 ). In

ddition, abnormal activity in the striatum and connectivity between

he striatum and the limbic system have been linked to impaired re-

ard processing in obesity and bipolar disorder ( Caseras et al., 2013 ,

ummenmaa et al., 2012 , Yip et al., 2015 ). Similarly, the observation

hat a cluster of voxels in the vmPFC is predictive of rewarding out-

omes is in accordance with previous fMRI research on economic deci-

ions and reward processing, as it has been associated consistently with

he receipt of reward or loss and the computation of subjective value

 Bartra et al., 2013 , Diekhof et al., 2012 , Haber and Knutson, 2010 ,

ringelbach, 2004 , Levy and Glimcher, 2012 , Peters and Büchel, 2010 ,

escousse et al., 2013 ). It is relevant to note that while we found reward
14 
o be positively associated in our BRS , this does not preclude the exis-

ence of circuits and ensembles that encode loss and aversive processes

nd conversely exhibit decreased activation in response to reward. 

As a next step, we tested the generalizability of the BRS on two dif-

erent samples. Firstly, we tested the relative predictive accuracy of the

RS on a different version of the MID, with five levels of monetary out-

omes instead of three, from a different sample and found that we could

gain decode monetary outcomes significantly with high accuracy, as

ssessed using the correlation between decoded and actual reward mag-

itude. Secondly, we assessed the predictive performance of the BRS on

 large sample (N = 1084) with a different task, namely a gambling task

rom the Human Connectome Project. Again, we found that the BRS was

ble to significantly predict monetary outcomes. Together, these results

ighlight the generalizability of the predictions of the BRS. The obser-

ation that predictive accuracy dropped in comparison to the other two

amples can be explained by the fact that this task differed from the

ID task in two ways: In contrast to the MID, the gambling included

ewards that were not symmetrically distributed around zero. In addi-

ion, the gambling task was developed for analysis using a block design

averaging over several trials of the same condition) whereas the MID

sed an event related design (modeling specific phases within a trial

ndividually). 

While our feature selection procedure, which removed voxels that

rimarily responded to salience, and training the BRS on a well-

stablished reward processing task provided a good fundament for en-

uring the specificity of predictions, we also wanted to empirically test

his specificity. To this end, we also evaluated the predictions of the BRS

n two phases of the DDT, a novel task designed to evoke disgust as a

egative outcome. First, we tested the outcome phase to test whether

redictions are specific to reward or generalize to other emotionally

alient outcomes such as disgust. The analysis provided evidence in fa-

or of the absence of an effect. Stated differently, the BRS generated

redictions that did not differ between participants viewing a disgust-

ng image or a neutral image. Second, we tested predictions during the

eedback phase which provided a success/failure feedback to the partic-

pants, and could therefore be triggering neurocognitive processes as-

ociated with reward/loss that are non-monetary in nature. Here we

ound a significant predictive performance of the BRS , suggesting that

he BRS decodes reward and loss processing more generally and is not

imited to monetary outcomes alone. This was also confirmed by the

igned loading of prediction errors for shocks on the BRS in the moral

onflict task, where less intense shock than expected, a negative rein-

orcer, led to positive loading on the BRS. These two findings suggest

hat the BRS predicts reinforcing outcomes, be they positive (financial

r otherwise) or negative reinforcers (withholding a shock) with some

pecificity that does not generalize to the other emotionally salient out-

ome (disgust in the DDT). Importantly, this specificity for reinforcers

https://neurosynth.org/analyses/terms/monetary\04520reward/
https://neurosynth.org/analyses/terms/outcome/
https://www.zotero.org/google-docs/?6Oiwns
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olds in the context of tasks in which the outcome is the result of a

articipant’s decision. 

To perform a first step along a necessarily long route to charac-

erize the BRS in task structures that differ fundamentally from those

n which it was trained, by identifying the boundaries of the stimuli

hat may load onto it, we used the EVT, in which participants witness

he anger, disgust, fear, happiness, pain and sadness of others. Impor-

antly, in the EVT, the stimuli were not a reward or punishment con-

ingent on the participant’s actions, acting as reinforcers, but stimuli

resented in random sequence independently of the participants perfor-

ance. Based on the literature on empathy, we might have expected that

iewing positively valenced facial expressions (happy) may have trig-

ered positively valenced feelings in the viewer and hence positive BRS

alues. This prediction was confirmed. Empathy may however also pre-

ict that viewing negatively valenced facial expressions (angry, fearful,

isgusted, sad, painful) may have triggered negatively valenced feelings

nd hence negative BRS values. This prediction was not confirmed, as

iewing most of the negatively valenced facial expressions yielded pos-

tive BRS values. In contrast, the literature on morbid curiosity predicts

hat participants are motivated to approach information independently

f its valence. ( Bennett et al., 2016 ) found that humans intrinsically

alue information in a way that is inconsistent with normative accounts

f decision-making under uncertainty and are willing to incur consid-

rable monetary costs to obtain information even if it is irrelevant to

he task at hand. Oosterwijk and colleagues ( Oosterwijk, 2017 ) have

hown that participants actively approach negatively valenced material

ather than neutral materials, with participants specifically choosing to

pproach social negative information over nonsocial negative informa-

ion and Kashdan and Silva ( Kashdan and Silvia, 2009 ) have found that

here are significant long term benefits to be reaped from being curi-

us about the emotions of others. Given this established motivation to

pproach even negatively valenced informative social stimuli, and that

ur negative emotional facial expressions were rated as interesting, that

iewing all but the painful facial expression yielded positive loadings

n the BRS may thus capture the satisfaction of this information-seeking

otivation - a signal similar enough to reward-signals to be captured by

 signature trained to capture reward vs. loss processing. Neuroimag-

ng evidence supporting the neural similarity of morbid curiosity and

eward-signals stems from a recent fMRI study that showed that choos-

ng negative stimuli is associated with the activation of reward related

tructures ( Oosterwijk et al., 2020 , Scrivner, 2021 ). ( Oosterwijk et al.,

020 )) used the same Neurosynth decoder approach that we employed

nd found that the top 3 terms associated with their activation when par-

icipants choose to view negatively valenced materials, were ‘reward’,

task’ and ‘monetary’, which is almost identical with our results. To fur-

her explore that similarity, we correlated our BRS with Oosterwijk and

olleagues’ whole brain map for morbid curiosity and found a significant

ositive correlation, further supporting a significant similarity between

he neural processes related to reward processing and morbid curios-

ty (see Appendix 4). In the light of these considerations, our initially

ounterintuitive finding that the BRS yields positive values for viewing

ositive and negative facial expressions, is perhaps less surprising. The

nformation content of these stimuli may have satisfied a motivation to

eek social information, triggering a signal reinforcing the processing

nd approach of these stimuli that resemble that involved in reward

nd loss sufficiently, to be captured by our signature trained to quan-

ify the latter. Indeed, the box office successes of movies that showcase

trong negative emotions in its protagonists are perhaps a token to the

einforcing value of even negative facial expressions. 

Negative and positive facial expressions are also more visually salient

han the neutral ones, inviting us to consider the possibility that the BRS

ay simply capture such salience. That both high gain and high losses

re salient in the MID tasks, but load in opposite directions onto the

RS speaks against such an unsigned salience signal. Accordingly, our

ata suggests a more nuanced working hypothesis that the BRS cap-

ures a signed reward vs. punishment signal when participants receive
15 
einforcers contingent on their actions (be they financial or otherwise)

nd information seeking signals when they are exposed to stimuli that

re not contingent on their actions. As mentioned in the introduction,

haracterizing the specificity of a neural signature is an ongoing process

hat will continue to develop as a signature is applied to a wider array

f paradigms, and testing the working hypothesis of a signal that may

einforce the exploration of informative stimuli will require further stud-

es that contrast stimuli that participants will voluntarily approach for

heir information content from those they will voluntarily avoid, with

he prediction that the former should produce positive and the latter

egative BRS loadings. 

Since previous research suggested that reward may be encoded

pecifically in the striatum (( Haber and Knutson, 2010 , Knutson et al.,

001 ), 2005), we also tested whether a broader circuit (i.e. including the

MPFC) is needed to decode reward. To this end we applied a more the-

ry driven approach where we used a meta-analytic map created based

n the term monetary reward and on the term outcome. These maps only

ncluded voxels in the striatum (and not in the vMPFC). Similar to the

ata-driven feature selection approach reported in the main text, the

RS significantly predicted monetary outcomes in the MID val and the

CP gambling task, and DDT feedback phase, but did not significantly

redict outcomes in the DDT outcome phase. Performance on the HCP

nd DDT feedback phase was higher for this theory driven approach

s compared to the data driven BRS . In contrast, performance on the

ID val was slightly lower for the theory driven approach, which was

xpected as the data-driven BRS involved feature selection trained on

 version of the MID task similar in nature and consequently was more

ikely to perform higher on a similar task. In contrast, the theory-driven

pproach was more task independent and more likely to perform simi-

arly well across tasks. This aligns well with the notion that the striatum

ay encode reward and losses quite generally within the decision mak-

ng framework. 

To test the robustness of our findings, we also repeated the reported

nalyses in the main text, using different thresholds for the feature se-

ection procedure and for the correction for multiple comparison (see

ppendix 2). These robustness checks validated the findings from the

ain text. For all feature selection and multiple comparison correction

hresholds, the predictions within the MID train , MID val, gambling task

nd feedback phase of the DDT remained significant. Only on the DDT

utcome phase (testing for specificity for reward processing), when us-

ng all voxels instead of selecting only voxels that were significant in

redicting monetary outcomes on the MID train , there was not enough

vidence to support the hypothesis that the BRS was unable to differen-

iate between disgusting and neutral images. This may be due to voxels

ontributing to the prediction that are not specific to predicting mone-

ary outcome but also encode emotional salience in general. Since we

sed a lenient threshold for the feature selection algorithm some vox-

ls coding for salience may have been included in the model and thus

owered the evidence in favor of the absence of an effect. This finding

uggests that users should use the signature only including significant

oxels when applying the BRS to other sets. 

In future studies, this BRS could be employed to differentiate and

ompare the contribution of various emotions and cognitive processes

o complex (social) decisions. For instance, we applied it to the case

f moral decisions, and found that outcomes for others may enter de-

ision making by mapping onto the BRS that was developed to cap-

ure first-person reinforcers (Fornari et al., under revision). The BRS

ould be applied in combination with neural signatures for vicarious

ain (( Caspar et al., 2020 , Krishnan et al., 2016 , Zhou et al., 2020 )

 Caspar et al., 2020 ) and for guilt ( Yu et al., 2020 ) to capture the con-

ribution of first-person reward circuitry in social decision-making. 

A limitation of our signature to consider when interpreting appli-

ations of our BRS , is that while its expression values correlate with

he reward outcome obtained by participants in the MID and gambling

ask, the BRS failed to identify neutral outcomes as such. Specifically,

n the MID tasks (MID train and MID val ), while we correctly find the
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Fig. 5. A: Prediction weights derived from the feature-selection approach based on the monetary reward meta-analytic map. B: Prediction weights derived from the 

feature-selection approach based on the outcome meta-analytic map. 
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ain conditions to generate values significantly above zero, and the loss

onditions to generate negative values, the neutral conditions generate

alues that are also slightly positive ( Fig. 3 A,B). In addition, the BRS

ailed to discriminate high and low reward conditions in the MID val and

lso did not differentiate the two rewarding conditions from the neu-

ral condition accurately. Conceptually, this may be explained by the

bservation that people generally seem to be loss averse (i.e., losses

oom larger than gains; ( Kahneman, 2011 )). Thus, a loss of the same

monetary) value as a reward will be experienced as more severe and

ay thus be encoded as more distant from zero (the neutral condition)

han a reward of an equal amount. This would explain why our algo-

ithm was not always able to significantly discriminate rewarding from

eutral trials, but always achieved significant discrimination between

eutral and loss trials. Methodologically, this observation may be ex-

lained by the fact that when training a linear model on a dependent

ariable with only three levels the model will be mostly influenced by

ts extreme points, whereas the middle point will be less influential in

etermining parameter estimates. Further, our feature selection algo-

ithm was designed to maximize relative prediction performance rather

han absolute prediction, because value based computations and asso-

iated outcome processing have been found to be context dependent

 Bateson et al., 2003 , Huber et al., 1982 , Louie et al., 2013 , Shafir et al.,

002 , Simonson, 1989 ) and that decisions do not reflect absolute valu-

tions assigned to individual alternatives. This however means that our

ignature should not be applied to the z-values of a single condition to

etermine if any reward processing was triggered, but rather on multiple

onditions to test whether they differ in reward processing. 

Another limitation pertains to the fact that several constructs related

o reward processing have been associated with the striatum and vMPFC

ontained in our BRS , such as the outcome value, anticipated outcome,

oal value and prediction error ( Diekhof et al., 2012 , Galtress et al.,

012 , Haber and Knutson, 2010 , Knutson et al., 2005 , O’Doherty et al.,
16 
004 , Rutledge et al., 2010 ) and we can’t precisely disentangle which of

hese processes are captured by our signature. The positive loading of all

ur facial expressions on the BRS further illustrates this point, negative

acial expressions may not be intuitively considered to be rewarding,

ven if an emerging literature shows that people decide to approach and

xplore them. This invites us to refine our understanding of the function

f these networks. Our understanding of the relationship between brain

nd cognition may benefit by engaging in such iterative multivariate

ycles in which one can attempt to tease apart the neural signatures of

ognitive constructs that we assume to be distinct, and vice versa, chal-

enge our understanding of the nature of these constructs by exploring

hat activates the signatures that are meant to isolate them. 

In summary, we created a BRS to predict monetary outcomes across

ecision tasks and several large samples. Within an experimental frame-

ork in which outcomes are contingent on our participants’ actions,

he BRS appears to perform that aim well: it is specific to rewarding

utcomes (in the sense of positive and negative reinforcers) and does

ot seem to generalize to disgusting outcomes. However, it is impor-

ant to be aware that outside of this action-outcome framework, such

pecificity for rewards is not supported. That passively viewing facial

xpressions, including many of negative valence, yields to positive BRS

alues indicates that it may also capture less explored signals reinforcing

he exploration of informative stimuli that may satisfy morbid curiosity.

hese curiosity-related signals may share enough neural substrates with

eward processing to be captured by our BRS that was trained to capture

hese latter reward processes ( Oosterwijk et al., 2020 ). 

The benefit of brain signature over the univariate approach is that it

ntegrates distributed information from regions across the whole brain

nto a single optimized prediction which can then be tested across con-

itions on new and independent individuals and samples. As a conse-

uence, this approach often circumvents the need for multiple com-

arisons and provides unbiased estimates of effect size ( Reddan et al.,
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Table 9 

Prediction performance for feature selection based on neurosynth maps. 

Analysis type Monetary reward association Outcome association 

MID train CV 0.63 (0.7 %, p corr < 0.001, RMSE = 3.23, p RMSE < 0.001, BF 10 > 1000) 0.68 (0.4 %; p corr < 0.001, RMSE = 2.97, p RMSE < 0.001, BF 10 > 1000) 

HCP Gambling 0.26 (p corr < 0.001, RMSE = 2.01, p RMSE < 0.001, BF 10 > 1000) 0.3 (p corr < 0.001, RMSE = 2.67, p RMSE < 0.001, BF 10 > 1000) 

DDT -0.09 (p corr = n.s., RMSE = 2.39, p RMSE < n.s., BF 10 = 0.23) -0.02 (p corr = n.s., RMSE = 2.51, p RMSE < n.s., BF 10 = 0.15) 

DDT Feedback 0.47 (p corr < 0.001, RMSE = 6.08, p RMSE < 0.001, BF > 1000) 0.49 (p corr < 0.001, RMSE = 6.17, p RMSE < 0.001, BF > 1000) 

MID val 0.71 ((p corr < 0.001, RMSE = 2.85, p RMSE < 0.001, BF 10 > 1000) 0.69 ((p corr < 0.001, RMSE = 2.89, p RMSE < 0.001, BF 10 > 1000) 

CV = cross-validation; BF 10 = Bayes Factor for evidence in favor of the alternative hypothesis; HCP = HCP gambling task; Percentage in the first row represents the 

number of voxels selected via feature selection for the different thresholds. 
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017 ), making the signature approach more sensitive, generalizable

nd reproducible than traditional univariate approaches ( Kragel et al.,

018 ).On the other hand, our results highlight that applying signatures

utside of the bounds of the paradigms they have been trained on, en-

ails the risk of ignoring the fact that the brain can utilize particular

etworks for rather different functions across different situations. 
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